IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Robust misspecification tests for the Heckman’s two-step estimator

  • Montes-Rojas, G.

We construct and evaluate LM and Neyman’s C(α) tests based on bivariate Edgeworth expansions for the consistency of the Heckman’s two-step estimator in selection models, that is, for the marginal normality and linearity of the conditional expectation of the error terms. The proposed tests are robust to local misspecification in nuisance distributional parameters. Monte Carlo results show that instead of testing bivariate normality, testing marginal normality and linearity of the conditional expectations separately have a better size performance. Moreover, the robust variants of the tests have better size and similar power to non-robust tests, which determines that these tests can be successfully applied to detect specific departures from the null model of bivariate normality. We apply the tests procedures to women’s labor supply data.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Department of Economics, City University London in its series Working Papers with number 08/01.

in new window

Date of creation: 2008
Date of revision:
Handle: RePEc:cty:dpaper:08/01
Contact details of provider: Postal:
Department of Economics, Social Sciences Building, City University London, Whiskin Street, London, EC1R 0JD, United Kingdom,

Phone: +44 (0)20 7040 8500
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Moshe Buchinsky, 1998. "The dynamics of changes in the female wage distribution in the USA: a quantile regression approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(1), pages 1-30.
  2. Bera, Anil K. & Yoon, Mann J., 1993. "Specification Testing with Locally Misspecified Alternatives," Econometric Theory, Cambridge University Press, vol. 9(04), pages 649-658, August.
  3. Lee, Lung-Fei, 1984. "Tests for the Bivariate Normal Distribution in Econometric Models with Selectivity," Econometrica, Econometric Society, vol. 52(4), pages 843-63, July.
  4. Heckman, J J & Tobias, Justin & Vytlacil, Ed, 2003. "Simple Estimators for Treatment Parameters in a Latent Variable Framework," Staff General Research Papers Archive 12012, Iowa State University, Department of Economics.
  5. Lung-Fei Lee, 1982. "Some Approaches to the Correction of Selectivity Bias," Review of Economic Studies, Oxford University Press, vol. 49(3), pages 355-372.
  6. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-90, March.
  7. Bera, Anil K & Jarque, Carlos M & Lee, Lung-Fei, 1984. "Testing the Normality Assumption in Limited Dependent Variable Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(3), pages 563-78, October.
  8. Thomas Mroz, . "The Sensitivity of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions," University of Chicago - Population Research Center 84-8, Chicago - Population Research Center.
  9. Gabler, Siegfried & Laisney, Francois & Lechner, Michael, 1993. "Seminonparametric Estimation of Binary-Choice Models with an Application to Labor-Force Participation," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 61-80, January.
  10. Newey, W.K. & Powell, J.L. & Walker, J.R., 1990. "Semiparametric Estimation Of Selection Models: Some Empirical Results," Working papers 9001, Wisconsin Madison - Social Systems.
  11. Jaggia, Sanjiv & Trivedi, Pravin K., 1994. "Joint and separate score tests for state dependence and unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 273-291.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cty:dpaper:08/01. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Research Publications Librarian)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.