IDEAS home Printed from
   My bibliography  Save this article

Robust Misspecification Tests for the Heckman's Two-Step Estimator


  • Gabriel Montes-Rojas


This article constructs and evaluates Lagrange multiplier (LM) and Neyman's C(α) tests based on bivariate Edgeworth series expansions for the consistency of the Heckman's two-step estimator in sample selection models, that is, for marginal normality and linearity of the conditional expectation of the error terms. The proposed tests are robust to local misspecification in nuisance distributional parameters. Monte Carlo results show that testing marginal normality and linearity of the conditional expectations separately have a better size performance than testing bivariate normality. Moreover, the robust variants of the tests have better empirical size than nonrobust tests, which determines that these tests can be successfully applied to detect specific departures from the null model of bivariate normality. Finally, the tests are applied to women's labor supply data.

Suggested Citation

  • Gabriel Montes-Rojas, 2011. "Robust Misspecification Tests for the Heckman's Two-Step Estimator," Econometric Reviews, Taylor & Francis Journals, vol. 30(2), pages 154-172.
  • Handle: RePEc:taf:emetrv:v:30:y:2011:i:2:p:154-172 DOI: 10.1080/07474938.2011.534035

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Newey, Whitney K & Powell, James L & Walker, James R, 1990. "Semiparametric Estimation of Selection Models: Some Empirical Results," American Economic Review, American Economic Association, vol. 80(2), pages 324-328, May.
    2. Gabler, Siegfried & Laisney, Francois & Lechner, Michael, 1993. "Seminonparametric Estimation of Binary-Choice Models with an Application to Labor-Force Participation," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 61-80, January.
    3. Jaggia, Sanjiv & Trivedi, Pravin K., 1994. "Joint and separate score tests for state dependence and unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 273-291.
    4. Bera, Anil K & Jarque, Carlos M & Lee, Lung-Fei, 1984. "Testing the Normality Assumption in Limited Dependent Variable Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(3), pages 563-578, October.
    5. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-390, March.
    6. James Heckman & Justin L. Tobias & Edward Vytlacil, 2003. "Simple Estimators for Treatment Parameters in a Latent-Variable Framework," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 748-755, August.
    7. Lee, Lung-Fei, 1984. "Tests for the Bivariate Normal Distribution in Econometric Models with Selectivity," Econometrica, Econometric Society, vol. 52(4), pages 843-863, July.
    8. Moshe Buchinsky, 1998. "The dynamics of changes in the female wage distribution in the USA: a quantile regression approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(1), pages 1-30.
    9. Bera, Anil K. & Yoon, Mann J., 1993. "Specification Testing with Locally Misspecified Alternatives," Econometric Theory, Cambridge University Press, vol. 9(04), pages 649-658, August.
    10. Lung-Fei Lee, 1982. "Some Approaches to the Correction of Selectivity Bias," Review of Economic Studies, Oxford University Press, vol. 49(3), pages 355-372.
    11. Mroz, Thomas A, 1987. "The Sensitivity of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions," Econometrica, Econometric Society, vol. 55(4), pages 765-799, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Michael Pfaffermayr, 2014. "A GMM-Based Test for Normal Disturbances of the Heckman Sample Selection Model," Econometrics, MDPI, Open Access Journal, vol. 2(4), pages 1-18, October.
    2. Mikhail Zhelonkin & Marc G. Genton & Elvezio Ronchetti, 2016. "Robust inference in sample selection models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 805-827, September.
    3. Riccardo LUCCHETTI & Claudia PIGINI, 2011. "Conditional Moment Tests for Normality in Bivariate Limited Dependent Variable Models: a Monte Carlo Study," Working Papers 357, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    4. Riccardo Lucchetti & Claudia Pigini, 2013. "A test for bivariate normality with applications in microeconometric models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(4), pages 535-572, November.
    5. Claudia PIGINI, 2012. "Of Butterflies and Caterpillars: Bivariate Normality in the Sample Selection Model," Working Papers 377, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:30:y:2011:i:2:p:154-172. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.