IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2025s-20.html
   My bibliography  Save this paper

GDP 5.0: Real-Time, Micro-Founded and Sustainable Metrics for Beyond-GDP Economic Assessment

Author

Listed:
  • Thierry Warin
  • Sarah Elimam

Abstract

Gross Domestic Product (GDP) remains the dominant yardstick for economic performance, yet its aggregated, nation-bound and market-exclusive nature obscures crucial dimensions of prosperity, equity and environmental sustainability. Building on recent advances in data science and the expanding “Beyond-GDP” literature, this article argues for a generational shift in economic measurement designated “GDP 5.0.” This new approach of GDP integrates high-frequency, geolocated micro-data with artificial-intelligence methods to generate real-time dashboards of economic activity, social welfare and planetary boundaries. The framework adopts an inductive, bottom-up approach, combining firm-level transactions, satellite imagery, sensor inputs, and social indicators. These diverse data streams are fused using explainable machine learning techniques to construct composite indices that capture regional heterogeneity and internalize negative externalities. The article examines the methodological foundations, governance challenges, and safeguards against algorithmic bias associated with GDP 5.0. It highlights the policy relevance of the framework through stylized applications in monetary, fiscal, and environmental domains. Aligning measurement practices with the complexities of the twenty-first century, GDP 5.0 proposes a pathway toward more responsive, inclusive, and sustainable economic governance. Le produit intérieur brut (PIB) reste la principale mesure de la performance économique, pourtant sa nature agrégée, nationale et exclusivement axée sur le marché occulte des dimensions cruciales telles que la prospérité, l'équité et la durabilité environnementale. S'appuyant sur les récentes avancées en science des données et sur la littérature croissante consacrée au « au-delà du PIB », cet article plaide en faveur d'un changement générationnel dans la mesure économique, baptisé « PIB 5.0 ». Cette nouvelle approche du PIB intègre des microdonnées géolocalisées à haute fréquence et des méthodes d'intelligence artificielle afin de générer des tableaux de bord en temps réel sur l'activité économique, le bien-être social et les limites planétaires. Le cadre adopte une approche inductive et ascendante, combinant les transactions au niveau des entreprises, l'imagerie satellite, les données des capteurs et les indicateurs sociaux. Ces divers flux de données sont fusionnés à l'aide de techniques d'apprentissage automatique explicables afin de construire des indices composites qui reflètent l'hétérogénéité régionale et internalisent les externalités négatives. L'article examine les fondements méthodologiques, les défis en matière de gouvernance et les garde-fous contre les biais algorithmiques associés au PIB 5.0. Il met en évidence la pertinence politique du cadre à travers des applications schématiques dans les domaines monétaires, fiscaux et environnementaux. En alignant les pratiques de mesure sur les complexités du XXIe siècle, le PIB 5.0 propose une voie vers une gouvernance économique plus réactive, inclusive et durable.

Suggested Citation

  • Thierry Warin & Sarah Elimam, 2025. "GDP 5.0: Real-Time, Micro-Founded and Sustainable Metrics for Beyond-GDP Economic Assessment," CIRANO Working Papers 2025s-20, CIRANO.
  • Handle: RePEc:cir:cirwor:2025s-20
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2025s-20.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luis Antonio Galiano Bastarrica & Eva M. Buitrago Esquinas & María Ángeles Caraballo Pou & Rocío Yñiguez Ovando, 2023. "Environmental adjustment of the EU27 GDP: an econometric quantitative model," Environment Systems and Decisions, Springer, vol. 43(1), pages 115-128, March.
    2. Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021. "Nowcasting GDP using machine-learning algorithms: A real-time assessment," International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
    3. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    4. Krugman, Paul, 1991. "Increasing Returns and Economic Geography," Journal of Political Economy, University of Chicago Press, vol. 99(3), pages 483-499, June.
    5. Ferrara, Laurent & Marcellino, Massimiliano & Mogliani, Matteo, 2015. "Macroeconomic forecasting during the Great Recession: The return of non-linearity?," International Journal of Forecasting, Elsevier, vol. 31(3), pages 664-679.
    6. Brent Bleys, 2012. "Beyond GDP: Classifying Alternative Measures for Progress," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 109(3), pages 355-376, December.
    7. Raj Chetty & Nathaniel Hendren & Patrick Kline & Emmanuel Saez, 2014. "Where is the land of Opportunity? The Geography of Intergenerational Mobility in the United States," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 129(4), pages 1553-1623.
    8. Jan P. A. M. Jacobs & Samad Sarferaz & Jan-Egbert Sturm & Simon van Norden, 2022. "Can GDP Measurement Be Further Improved? Data Revision and Reconciliation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 423-431, January.
    9. Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021. "Nowcasting GDP using machine-learning algorithms: A real-time assessment," International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
    10. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    11. Anders Hayden & Jeffrey Wilson, 2018. "Taking the First Steps beyond GDP: Maryland’s Experience in Measuring “Genuine Progress”," Sustainability, MDPI, vol. 10(2), pages 1-24, February.
    12. Dasgupta, Partha, 2007. "Economics: A Very Short Introduction," OUP Catalogue, Oxford University Press, number 9780192853455.
    13. Kubiszewski, Ida & Costanza, Robert & Franco, Carol & Lawn, Philip & Talberth, John & Jackson, Tim & Aylmer, Camille, 2013. "Beyond GDP: Measuring and achieving global genuine progress," Ecological Economics, Elsevier, vol. 93(C), pages 57-68.
    14. Johan Rockström & Will Steffen & Kevin Noone & Åsa Persson & F. Stuart Chapin & Eric F. Lambin & Timothy M. Lenton & Marten Scheffer & Carl Folke & Hans Joachim Schellnhuber & Björn Nykvist & Cynthia , 2009. "A safe operating space for humanity," Nature, Nature, vol. 461(7263), pages 472-475, September.
    15. Vahid Javidroozi & Claudia Carter & Michael Grace & Hanifa Shah, 2023. "Smart, Sustainable, Green Cities: A State-of-the-Art Review," Sustainability, MDPI, vol. 15(6), pages 1-28, March.
    16. Weiss, Martin & Cattaneo, Claudio, 2017. "Degrowth – Taking Stock and Reviewing an Emerging Academic Paradigm," Ecological Economics, Elsevier, vol. 137(C), pages 220-230.
    17. Del Prete, Davide & Rungi, Armando, 2017. "Organizing the global value chain: A firm-level test," Journal of International Economics, Elsevier, vol. 109(C), pages 16-30.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paker, Meredith & Stephenson, Judy & Wallis, Patrick, 2025. "Predictive modeling the past," LSE Research Online Documents on Economics 128852, London School of Economics and Political Science, LSE Library.
    2. Andrei Dubovik & Adam Elbourne & Bram Hendriks & Mark Kattenberg, 2022. "Forecasting World Trade Using Big Data and Machine Learning Techniques," CPB Discussion Paper 441, CPB Netherlands Bureau for Economic Policy Analysis.
    3. Alina Landowska & Robert A. K{l}opotek & Dariusz Filip & Konrad Raczkowski, 2025. "GDP-GFCF Dynamics Across Global Economies: A Comparative Study of Panel Regressions and Random Forest," Papers 2504.20993, arXiv.org.
    4. Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2024. "Lessons from nowcasting GDP across the world," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 8, pages 187-217, Edward Elgar Publishing.
    5. Barış Soybilgen & Ege Yazgan, 2021. "Nowcasting US GDP Using Tree-Based Ensemble Models and Dynamic Factors," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 387-417, January.
    6. Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
    7. Sabyasachi Kar & Amaani Bashir & Mayank Jain, 2021. "New Approaches to Forecasting Growth and Inflation: Big Data and Machine Learning," IEG Working Papers 446, Institute of Economic Growth.
    8. Kim, Yeon-Su & Rodrigues, Marcos & Robinne, François-Nicolas, 2021. "Economic drivers of global fire activity: A critical review using the DPSIR framework," Forest Policy and Economics, Elsevier, vol. 131(C).
    9. Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
    10. Lenza, Michele & Moutachaker, Inès & Paredes, Joan, 2025. "Density forecasts of inflation: A quantile regression forest approach," European Economic Review, Elsevier, vol. 178(C).
    11. Jaehyun Yoon, 2021. "Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 247-265, January.
    12. Alexandra Bozhechkova & Urmat Dzhunkeev, 2024. "CLARA and CARLSON: Combination of Ensemble and Neural Network Machine Learning Methods for GDP Forecasting," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 45-69, September.
    13. Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2023. "Testing big data in a big crisis: Nowcasting under Covid-19," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1548-1563.
    14. Zin Mar Oo & Ching‐Yang Lin & Makoto Kakinaka, 2025. "Deciphering Long‐Term Economic Growth: An Exploration With Leading Machine Learning Techniques," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(4), pages 1531-1562, July.
    15. Juan Jos√© Rinc√≥n Brice√±o, 2025. "Colombian economic activity nowcasting: addressing nonlinearities and high dimensionality through machine-learning," Documentos CEDE 21388, Universidad de los Andes, Facultad de Economía, CEDE.
    16. Silva, Thiago Christiano & Wilhelm, Paulo Victor Berri & Amancio, Diego R., 2024. "Machine learning and economic forecasting: The role of international trade networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 649(C).
    17. Manu Sharma & Vinish Kathuria, 2025. "Macroeconomic Nowcasting: What can Central Banks Learn from a Structured Literature Review?," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 23(2), pages 333-388, June.
    18. Jairo Flores & Bruno Gonzaga & Walter Ruelas-Huanca & Juan Tang, 2025. "Nowcasting Peru's GDP with Machine Learning Methods," IHEID Working Papers 01-2025, Economics Section, The Graduate Institute of International Studies.
    19. Hametner, Markus, 2022. "Economics without ecology: How the SDGs fail to align socioeconomic development with environmental sustainability," Ecological Economics, Elsevier, vol. 199(C).
    20. Dennis Kant & Andreas Pick & Jasper de Winter, 2025. "Nowcasting GDP using machine learning methods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 109(1), pages 1-24, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2025s-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.