IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2016s-16.html
   My bibliography  Save this paper

Efficient Two-Step Estimation via Targeting

Author

Listed:
  • David T. Frazierz
  • Éric Renault

Abstract

The standard description of two-step extremum estimation amounts to plugging-in a first-step estimator of nuisance parameters to simplify the optimization problem and then deducing a user friendly, but potentially inefficient, estimator for the parameters of interest. In this paper, we consider a more general setting of two-step estimation where we do not necessarily have “nuisance parameters” but rather awkward occurrences of the parameters of interest. The efficiency problem associated with two-step estimators in this context is more difficult than with standard nuisance parameters as even if the true unknown value of the parameters were plugged-in to alleviate the awkward occurrences of the parameters, the resulting second-step estimator may not be efficient. In addition, standard approaches to restore efficiency for two-step procedures may not work due to a consistency issue. To alleviate this potential issue, we propose a new computationally simple two-step estimation procedure that relies on targeting and penalized to enforce consistency, with the second-step estimators maintaining asymptotic efficiency. We compare this new method with existing iterative methods in the framework of copula models and asset pricing models. Simulation results illustrate that this new method performs better than existing iterative procedures and is (nearly) computationally equivalent.

Suggested Citation

  • David T. Frazierz & Éric Renault, 2016. "Efficient Two-Step Estimation via Targeting," CIRANO Working Papers 2016s-16, CIRANO.
  • Handle: RePEc:cir:cirwor:2016s-16
    as

    Download full text from publisher

    File URL: http://www.cirano.qc.ca/files/publications/2016s-16.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Hatanaka, Michio, 1974. "An efficient two-step estimator for the dynamic adjustment model with autoregressive errors," Journal of Econometrics, Elsevier, vol. 2(3), pages 199-220, September.
    2. Adrian Pagan, 1986. "Two Stage and Related Estimators and Their Applications," Review of Economic Studies, Oxford University Press, vol. 53(4), pages 517-538.
    3. Antoine, Bertille & Renault, Eric, 2012. "Efficient minimum distance estimation with multiple rates of convergence," Journal of Econometrics, Elsevier, vol. 170(2), pages 350-367.
    4. Gourieroux, C & Monfort, A & Renault, E, 1993. "Indirect Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 85-118, Suppl. De.
    5. Noureldin, Diaa & Shephard, Neil & Sheppard, Kevin, 2014. "Multivariate rotated ARCH models," Journal of Econometrics, Elsevier, vol. 179(1), pages 16-30.
    6. Yanqin Fan & Sergio Pastorello & Eric Renault, 2015. "Maximization by parts in extremum estimation," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 147-171, June.
    7. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    8. Crepon, Bruno & Kramarz, Francis & Trognon, Alain, 1997. "Parameters of interest, nuisance parameters and orthogonality conditions An application to autoregressive error component models," Journal of Econometrics, Elsevier, vol. 82(1), pages 135-156.
    9. Pastorello, Sergio & Patilea, Valentin & Renault, Eric, 2003. "Iterative and Recursive Estimation in Structural Nonadaptive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 449-482, October.
    10. Pastorello, Sergio & Patilea, Valentin & Renault, Eric, 2003. "Iterative and Recursive Estimation in Structural Nonadaptive Models: Rejoinder," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 503-509, October.
    11. Dominitz, Jeff & Sherman, Robert P., 2005. "Some Convergence Theory For Iterative Estimation Procedures With An Application To Semiparametric Estimation," Econometric Theory, Cambridge University Press, vol. 21(04), pages 838-863, August.
    12. Peter Xue-Kun Song, 2000. "Multivariate Dispersion Models Generated From Gaussian Copula," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(2), pages 305-320.
    13. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    14. Robinson, Peter M, 1988. "The Stochastic Difference between Econometric Statistics," Econometrica, Econometric Society, vol. 56(3), pages 531-548, May.
    15. Liu, Yan & Luger, Richard, 2009. "Efficient estimation of copula-GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2284-2297, April.
    16. Song, Peter X.K. & Fan, Yanqin & Kalbfleisch, John D., 2005. "Maximization by Parts in Likelihood Inference," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1145-1158, December.
    17. repec:hrv:faseco:34650305 is not listed on IDEAS
    18. Jin-Chuan Duan, 1994. "Maximum Likelihood Estimation Using Price Data Of The Derivative Contract," Mathematical Finance, Wiley Blackwell, vol. 4(2), pages 155-167.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Targeting; Penalization; Multivariate Time Series Models; Asset Pricing;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2016s-16. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster). General contact details of provider: http://edirc.repec.org/data/ciranca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.