IDEAS home Printed from
   My bibliography  Save this paper

Sustainable Network Dynamics


  • Arnaud Dragicevic
  • Bernard Sinclair-Desgagné


We propose a dynamic graph-theoretic model for ecosystem management as a control over networked system composed of target nodes and unmarked nodes. The network is represented by a complete graph, in which all vertices are connected by a unique edge. Target nodes are attracted by the objective function issued from the external ecosystem management. They pull the network towards the objective position, which is either non-null or stationary. The management policy is considered successful if the graph remains connected in time, that is, target nodes attain the objective and unmarked nodes stay in the convex hull. At the time of the ecosystem network transfer, the model yields an Impossibility Theorem as well as a Sustainability Criterion to maintain full connectivity of the network. The latter can be easily linked to the general definition of sustainability as ecosystem integrity preservation. At last, we identify three management rules to ensure the maintenance of connectivity in time, given the properties of the objective transposition function, the nature of connections and utility updating time-delays between the nodes Nous proposons un modèle dynamique de gestion des écosystèmes par la théorie des graphes en tant que contrôle d'un système en réseau composé de nuds cibles et de nuds non identifiés. Le réseau est représenté par un graphe complet dans lequel tous les nuds sont connectés par une arête unique. Les nuds cibles sont attirés par une fonction objectif issue d'un processus externe de gestion des écosystèmes. Ils tirent le réseau vers la position de l'objectif qui peut être non-nulle ou stationnaire. La politique de gestion est considérée réussie si le graphe reste connecté dans le temps, c'est-à-dire que les nuds cibles atteignent l'objectif et les nuds non identifiés restent dans l'enveloppe convexe. Lors de la transposition du réseau écosystémique dans le temps, le modèle génère un Théorème de l'Impossibilité ainsi qu'un Critère de Durabilité qui maintient la pleine connectivité du réseau. Ce dernier peut aisément être relié à la définition générale de la durabilité comme la préservation de l'intégrité écologique. Enfin, nous identifions trois règles de gestion pour assurer le maintien de la connectivité dans le temps, sachant les propriétés de la fonction objectif de transposition, la nature des connexions, et les retards de réactualisation de l'utilité entre les nuds.

Suggested Citation

  • Arnaud Dragicevic & Bernard Sinclair-Desgagné, 2011. "Sustainable Network Dynamics," CIRANO Working Papers 2011s-51, CIRANO.
  • Handle: RePEc:cir:cirwor:2011s-51

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Arie Beresteanu & Ilya Molchanov & Francesca Molinari, 2009. "Sharp identification regions in models with convex predictions: games, individual choice, and incomplete data," CeMMAP working papers CWP27/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Ruud H. Koning & Geert Ridder, 2003. "Discrete choice and stochastic utility maximization," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 1-27, June.
    3. Li, Qi & Racine, Jeffrey S, 2008. "Nonparametric Estimation of Conditional CDF and Quantile Functions With Mixed Categorical and Continuous Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 423-434.
    4. Richard Blundell & Martin Browning & Ian Crawford, 2008. "Best Nonparametric Bounds on Demand Responses," Econometrica, Econometric Society, vol. 76(6), pages 1227-1262, November.
    5. Jeong, Gyung-Ho, 2008. "Testing the Predictions of the Multidimensional Spatial Voting Model with Roll Call Data," Political Analysis, Cambridge University Press, vol. 16(02), pages 179-196, March.
    6. Heckman, James J, 1978. "Dummy Endogenous Variables in a Simultaneous Equation System," Econometrica, Econometric Society, vol. 46(4), pages 931-959, July.
    7. Borsch-Supan, Axel, 1990. "On the compatibility of nested logit models with utility maximization," Journal of Econometrics, Elsevier, vol. 43(3), pages 373-388, March.
    8. Degan, Arianna & Merlo, Antonio, 2009. "Do voters vote ideologically?," Journal of Economic Theory, Elsevier, vol. 144(5), pages 1868-1894, September.
    9. Nicholas Christakis & James Fowler & Guido Imbens & Karthik Kalyanaraman, 2010. "An empirical model for strategic network formation," CeMMAP working papers CWP16/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Kalandrakis, Tasos, 2010. "Rationalizable voting," Theoretical Economics, Econometric Society, vol. 5(1), January.
    11. Anthony Downs, 1957. "An Economic Theory of Political Action in a Democracy," Journal of Political Economy, University of Chicago Press, vol. 65, pages 135-135.
    12. Bogomolnaia, Anna & Laslier, Jean-Francois, 2007. "Euclidean preferences," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 87-98, February.
    13. Chesher, Andrew D, 1984. "Testing for Neglected Heterogeneity," Econometrica, Econometric Society, vol. 52(4), pages 865-872, July.
    14. Norman Schofield, 2007. "The Mean Voter Theorem: Necessary and Sufficient Conditions for Convergent Equilibrium," Review of Economic Studies, Oxford University Press, vol. 74(3), pages 965-980.
    Full references (including those not matched with items on IDEAS)

    More about this item


    bioeconomics; ecosystem management; graph theory; connectedness.; bioéconomie; gestion des écosystèmes; théorie des graphes; connectivité;

    JEL classification:

    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2011s-51. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.