IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v405y2014icp151-158.html
   My bibliography  Save this article

Topology of whole-brain functional MRI networks: Improving the truncated scale-free model

Author

Listed:
  • Ruiz Vargas, E.
  • Mitchell, D.G.V.
  • Greening, S.G.
  • Wahl, L.M.

Abstract

Networks of connections within the human brain have been the subject of intense recent research, yet their topology is still only partially understood. We analyze weighted networks calculated from functional magnetic resonance imaging (fMRI) data acquired during task performance. Expanding previous work in the area, our analysis retains all of the connections between all of the voxels in the full brain fMRI data, computing correlations between approximately 200,000 voxels per subject for 10 subjects. We evaluate the extent to which this rich dataset can be described by existing models of scale-free or exponentially truncated scale-free topology, comparing results across a large number of more complex topological models as well. Our results suggest that the novel “log quadratic” model presented in this paper offers a significantly better fit to networks of functional connections at the voxel level in the human brain.

Suggested Citation

  • Ruiz Vargas, E. & Mitchell, D.G.V. & Greening, S.G. & Wahl, L.M., 2014. "Topology of whole-brain functional MRI networks: Improving the truncated scale-free model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 151-158.
  • Handle: RePEc:eee:phsmap:v:405:y:2014:i:c:p:151-158
    DOI: 10.1016/j.physa.2014.03.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114002192
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.03.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 2000. "Scale-free characteristics of random networks: the topology of the world-wide web," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 281(1), pages 69-77.
    2. Zhang Bin & Horvath Steve, 2005. "A General Framework for Weighted Gene Co-Expression Network Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-45, August.
    3. Akaike, Hirotugu, 1981. "Likelihood of a model and information criteria," Journal of Econometrics, Elsevier, vol. 16(1), pages 3-14, May.
    4. Karen E Joyce & Paul J Laurienti & Jonathan H Burdette & Satoru Hayasaka, 2010. "A New Measure of Centrality for Brain Networks," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-13, August.
    5. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Haitao & Guo, Xinmeng & Qin, Qing & Deng, Yun & Wang, Jiang & Liu, Jing & Cao, Yibin, 2017. "Synchrony dynamics underlying effective connectivity reconstruction of neuronal circuits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 674-687.
    2. Lahmiri, Salim, 2016. "Image characterization by fractal descriptors in variational mode decomposition domain: Application to brain magnetic resonance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 235-243.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Huan & Xu, Chuan-Yun & Hu, Jing-Bo & Cao, Ke-Fei, 2014. "A complex network analysis of hypertension-related genes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 166-176.
    2. Li, Jianyu & Zhou, Jie, 2007. "Chinese character structure analysis based on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 629-638.
    3. Wang, Yanhui & Bi, Lifeng & Lin, Shuai & Li, Man & Shi, Hao, 2017. "A complex network-based importance measure for mechatronics systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 180-198.
    4. Dhal, R. & Abad Torres, J. & Roy, S., 2015. "Detecting link failures in complex network processes using remote monitoring," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 36-54.
    5. Peter Roopnarine, 2013. "Ecology and the Tragedy of the Commons," Sustainability, MDPI, vol. 5(2), pages 1-25, February.
    6. Salcedo-Sanz, S. & Cuadra, L., 2019. "Quasi scale-free geographically embedded networks over DLA-generated aggregates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1286-1305.
    7. Ying Wang & Xiangmei Li & Jiangfeng Li & Zhengdong Huang & Renbin Xiao, 2018. "Impact of Rapid Urbanization on Vulnerability of Land System from Complex Networks View: A Methodological Approach," Complexity, Hindawi, vol. 2018, pages 1-18, May.
    8. Li, Wenyuan & Lin, Yongjing & Liu, Ying, 2007. "The structure of weighted small-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 708-718.
    9. Chen, Qinghua & Shi, Dinghua, 2006. "Markov chains theory for scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 121-133.
    10. Li, Jianyu & Zhou, Jie & Luo, Xiaoyue & Yang, Zhanxin, 2012. "Chinese lexical networks: The structure, function and formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5254-5263.
    11. Yao, Xin & Zhang, Chang-shui & Chen, Jin-wen & Li, Yan-da, 2005. "On the formation of degree and cluster-degree correlations in scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 661-673.
    12. Lian, Ying & Dong, Xuefan & Liu, Yijun, 2017. "Topological evolution of the internet public opinion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 567-578.
    13. Zhao, Star X. & Rousseau, Ronald & Ye, Fred Y., 2011. "h-Degree as a basic measure in weighted networks," Journal of Informetrics, Elsevier, vol. 5(4), pages 668-677.
    14. María Ayuda & Fernando Collantes & Vicente Pinilla, 2010. "From locational fundamentals to increasing returns: the spatial concentration of population in Spain, 1787–2000," Journal of Geographical Systems, Springer, vol. 12(1), pages 25-50, March.
    15. Asghar, Zahid & Abid, Irum, 2007. "Performance of lag length selection criteria in three different situations," MPRA Paper 40042, University Library of Munich, Germany.
    16. Emerson, Isaac Arnold & Amala, Arumugam, 2017. "Protein contact maps: A binary depiction of protein 3D structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 782-791.
    17. Karakotsios, Achillefs & Katrakilidis, Constantinos & Kroupis, Nikolaos, 2021. "The dynamic linkages between food prices and oil prices. Does asymmetry matter?," The Journal of Economic Asymmetries, Elsevier, vol. 23(C).
    18. Faedo, Nicolás & García-Violini, Demián & Ringwood, John V., 2021. "Controlling synchronization in a complex network of nonlinear oscillators via feedback linearisation and H∞-control," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    19. Yixuan Qiu & Jing Lei & Kathryn Roeder, 2023. "Gradient-based sparse principal component analysis with extensions to online learning," Biometrika, Biometrika Trust, vol. 110(2), pages 339-360.
    20. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:405:y:2014:i:c:p:151-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.