IDEAS home Printed from
   My bibliography  Save this paper

Factor Analysis and Independent Component Analysis in Presence of High Idiosyncratic Risks


  • Thierry Vessereau


This paper addresses the case when stock market returns are assumed being generated through a factorial structure. High levels of idiosyncratic risk are shown to exist for most stocks on the US market, when CAPM or APT are used for the estimation of diversifiable risks. The presence of these high idiosyncratic risks may not allow a correct estimation of the generating factors when using a classic factor analysis method. The Independent Component Analysis is introduced as an adequate method for factor estimation; using neural networks, this method allows taking into account the information contained in higher moments. Through simulations of markets with various assumptions on the kind of processes followed by the generating factors, this method is shown to strongly improve the factors estimation, especially when high idiosyncratic risks are present. In the latter case, a traditional factor analysis, such as the Principal Component Analysis, may fail to estimate the generating factors. Cet article traite le cas d'un marché d'actions dont les rendements sont susceptibles d'être expliqués par une structure factorielle. Sur le marché américain, il est montré que des risques idiosyncratiques élevés existent pour la plupart des actions quelque soit le modèle d'évaluation utilisé (CAPM ou APT). La présence de ces risques idiosyncratiques élevés peut empêcher une évaluation correcte des facteurs générant les rendements, lorsqu'une méthode d'analyse factorielle classique est utilisée. Il est ici proposé d'utiliser la méthode de l'Analyse en Composantes Indépendantes (INCA), reposant sur les réseaux neuronaux, pour parvenir à une évaluation correcte des facteurs; cette méthode permet de prendre en compte la majeure partie de l'information contenue dans les distributions des rendements des actions, en utilisant les moments d'ordre élevé de ces distributions. ¸ l'aide de simulations de marchés artificiels, pour lesquels différentes hypothèses des processus de générations des rendements sont retenus, il est montré que la méthode de l'INCA permet une amélioration significative de l'estimation de la structure factorielle, en particulier lorsque des composantes idiosyncratiques élevées sont présents dans les les rendements des actions. Dans ce dernier cas, une méthode classique d'analyse factorielle, comme l'Analyse en Composantes Principales, peut échouer totalement dans l'estimation des facteurs.

Suggested Citation

  • Thierry Vessereau, 2000. "Factor Analysis and Independent Component Analysis in Presence of High Idiosyncratic Risks," CIRANO Working Papers 2000s-46, CIRANO.
  • Handle: RePEc:cir:cirwor:2000s-46

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Ross, Stephen A., 1976. "The arbitrage theory of capital asset pricing," Journal of Economic Theory, Elsevier, vol. 13(3), pages 341-360, December.
    2. Grinblatt, Mark & Titman, Sheridan, 1983. "Factor pricing in a finite economy," Journal of Financial Economics, Elsevier, vol. 12(4), pages 497-507, December.
    3. Trzcinka, Charles A, 1986. " On the Number of Factors in the Arbitrage Pricing Model," Journal of Finance, American Finance Association, vol. 41(2), pages 347-368, June.
    4. Chen, Nai-fu & Ingersoll, Jonathan E, Jr, 1983. " Exact Pricing in Linear Factor Models with Finitely Many Assets: A Note," Journal of Finance, American Finance Association, vol. 38(3), pages 985-988, June.
    5. Huberman, Gur, 1982. "A simple approach to arbitrage pricing theory," Journal of Economic Theory, Elsevier, vol. 28(1), pages 183-191, October.
    6. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    7. Connor, Gregory, 1984. "A unified beta pricing theory," Journal of Economic Theory, Elsevier, vol. 34(1), pages 13-31, October.
    8. Chen, Nai-fu, 1983. " Some Empirical Tests of the Theory of Arbitrage Pricing," Journal of Finance, American Finance Association, vol. 38(5), pages 1393-1414, December.
    9. Roll, Richard & Ross, Stephen A, 1980. " An Empirical Investigation of the Arbitrage Pricing Theory," Journal of Finance, American Finance Association, vol. 35(5), pages 1073-1103, December.
    10. Ingersoll, Jonathan E, Jr, 1984. " Some Results in the Theory of Arbitrage Pricing," Journal of Finance, American Finance Association, vol. 39(4), pages 1021-1039, September.
    11. Lehmann, Bruce N. & Modest, David M., 1988. "The empirical foundations of the arbitrage pricing theory," Journal of Financial Economics, Elsevier, vol. 21(2), pages 213-254, September.
    12. Mei, Jianping, 1993. " A Semiautoregression Approach to the Arbitrage Pricing Theory," Journal of Finance, American Finance Association, vol. 48(2), pages 599-620, June.
    13. Chen, Nai-Fu & Roll, Richard & Ross, Stephen A, 1986. "Economic Forces and the Stock Market," The Journal of Business, University of Chicago Press, vol. 59(3), pages 383-403, July.
    14. Connor, Gregory & Korajczyk, Robert A., 1986. "Performance measurement with the arbitrage pricing theory : A new framework for analysis," Journal of Financial Economics, Elsevier, vol. 15(3), pages 373-394, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. M. Vermorken & A. Szafarz & H. Pirotte, 2010. "Sector classification through non-Gaussian similarity," Applied Financial Economics, Taylor & Francis Journals, vol. 20(11), pages 861-878.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2000s-46. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.