IDEAS home Printed from https://ideas.repec.org/p/ulb/ulbeco/2013-95542.html

Sector Classification through non-Gaussian Similarity

Author

Listed:
  • Maximilian Vermorken
  • Ariane Szafarz
  • Hugues Pirotte

Abstract

Standard sector classification frameworks present drawbacks that might hinder portfolio manager. This paper introduces a new non-parametric approach to equity classification. Returns are decomposed into their fundamental drivers through Independent Component Analysis (ICA). Stocks are then classified according to the relative importance of identified fundamental drivers for their returns. A method is developed permitting the quantification of these dependencies, using a similarity index. Hierarchical clustering allows for grouping the stocks into new classes. The resulting classes are compared with those from the 2-digit GICS system for U.S. blue chip companies. It is shown that specific relations between stocks are not captured by the GICS framework. The method is applied on two different samples and tested for robustness.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Maximilian Vermorken & Ariane Szafarz & Hugues Pirotte, 2010. "Sector Classification through non-Gaussian Similarity," ULB Institutional Repository 2013/95542, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:ulb:ulbeco:2013/95542
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marie Brière & Ariane Szafarz, 2021. "When it rains, it pours: Multifactor asset management in good and bad times," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 44(3), pages 641-669, September.
    2. Marie Briere & Ariane Szafarz, 2015. "Factor-Based v. Industry-Based Asset Allocation: The Contest," Working Papers CEB 15-035, ULB -- Universite Libre de Bruxelles.
    3. Bruzda, Joanna, 2017. "Real and complex wavelets in asset classification: An application to the US stock market," Finance Research Letters, Elsevier, vol. 21(C), pages 115-125.
    4. Waqas Nawaz & Muammer Koç, 2019. "Exploring Organizational Sustainability: Themes, Functional Areas, and Best Practices," Sustainability, MDPI, vol. 11(16), pages 1-36, August.
    5. Marie Briere & Ariane Szafarz, 2018. "Factors and Sectors in Asset Allocation: Stronger Together?," Working Papers CEB 18-016, ULB -- Universite Libre de Bruxelles.

    More about this item

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G19 - Financial Economics - - General Financial Markets - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ulb:ulbeco:2013/95542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Pauwels (email available below). General contact details of provider: https://edirc.repec.org/data/ecsulbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.