IDEAS home Printed from https://ideas.repec.org/p/cir/cirpro/2012rp-01.html
   My bibliography  Save this paper

Les déterminants macroéconomiques de l'épargne québécoise et canadienne – une étude économétrique

Author

Listed:
  • Mara Gloria
  • François Vaillancourt
  • Pedro Lages Dos Santos

Abstract

This study uses the CCR, FM-MCO, MCOD, and Johansen's VECM cointegration techniques to find the macroeconomic determinants of Canadian and Quebec savings between 1981 and 2010. Three savings specifications are used: savings in millions of dollars, natural log savings and the personal savings rate. The explanatory variables from consumer theory used in the estimates are: net wealth, disposable income, consumer credit, mortgage credit, employee contributions to RRSPs and RPPs, real interest rates, inflation, women's labour force participation, and proportions by age of the population. According to Phillips-Perron unit root tests, the majority of the variables are either I(0) or I(1), but the order of integration of private pension contributions and age-specific proportions of the population ranges from stationary around a trend I(1) to I(2). The three savings specifications are cointegrated according to the Engle-Granger cointegration test. The Johansen test even detects several cointegration relationships, which makes it very difficult to estimate an error-correction model. According to the elasticities of long-term relationships estimated by the different cointegration techniques, the best specification for studying Canadian and Quebec savings is the savings rate. A Johansen error correction model is then implemented for this savings specification for Canada and Quebec. The results of the impulse analysis from the Canadian model indicate that a shock to net wealth or mortgage credit or to the real interest rate would have a positive impact on the Canadian savings rate, while a shock to RRSP contributions or to women's labour force participation would have a negative and permanent impact. Consumer credit would have a negative impact for four quarters; then the impact is positive but it does not converge. The impact of inflation is very small. In the case of the Quebec impulse analysis, a shock on net wealth or on consumer credit or on mortgage credit or on the interest rate would have a positive and permanent impact on the savings rate. The RRSP contribution rate is initially positive but decreases and becomes negative from the 4th quarter onwards without converging on a value. A shock on women's labour force participation has a negative impact first; then the impact converges to a positive value. Inflation would largely have a positive impact on the savings rate. It should be noted that the impulse analyses may be biased and not robust because of the difficulty in properly identifying cointegrating relationships in the error-correction model of Canada and Quebec in particular. Cette étude utilise les techniques de cointégration CCR, FM-MCO, MCOD, et le VECM de Johansen pour trouver les déterminants macroéconomiques de l'épargne canadienne et québécoise entre 1981 et 2010. Trois spécifications de l'épargne sont utilisées : l'épargne en millions $, l'épargne en log naturel et le taux d'épargne personnel. Les variables explicatives provenant de la théorie de la consommation et utilisées dans les estimations sont : la richesse nette, le revenu disponible, le crédit à la consommation, le crédit hypothécaire, les contributions des employés au REER et au RPA, le taux d'intérêt réel, l'inflation, la participation des femmes au marché du travail, et les proportions selon l'âge de la population. Selon les tests de racine unitaire de Phillips-Perron, la majorité des variables sont soit I(0) soit I(1), mais l'ordre d'intégration des contributions aux régimes de pension privés et des proportions de la population selon l'âge oscille entre stationnaire autour d'une tendance I(1) et I(2). Les trois spécifications de l'épargne sont cointégrées selon le test de cointégration d'Engle-Granger. Le test de Johansen détecte même plusieurs relations de cointégration, c'est ce qui complique beaucoup l'estimation d'un modèle à correction d'erreur. Selon les élasticités des relations de long terme estimées par les différentes techniques de cointégration, la meilleure spécification pour étudier l'épargne canadienne et québécoise est le taux d'épargne. Un modèle à correction d'erreur de Johansen est alors implémenté pour cette spécification de l'épargne pour le Canada et le Québec. Les résultats de l'analyse impulsionnelle tirée du modèle canadien indiquent qu'un choc sur la richesse nette ou sur le crédit hypothécaire ou sur le taux d'intérêt réel aurait un impact positif sur le taux d'épargne canadien tandis qu'un choc sur les contributions au REER ou sur la participation des femmes au marché du travail aurait un impact négatif et permanent. Le crédit à la consommation aurait un impact négatif pendant quatre trimestres; ensuite l'impact est positif mais il ne converge pas. L'impact de l'inflation est très petit. Dans le cas de l'analyse impulsionnelle québécoise, un choc sur la richesse nette ou sur le crédit à la consommation ou sur le crédit hypothécaire ou sur le taux d'intérêt aurait un impact positif et permanent sur le taux d'épargne. Celui des contributions au REER est d'abord positif mais il décroit et devient négatif à partir du 4e trimestre sans converger vers une valeur. Un choc sur la participation des femmes au marché du travail a d'abord un impact négatif; ensuite l'impact converge vers une valeur positive. L'inflation aurait en grande partie un impact positif sur le taux d'épargne. Il faut noter que les analyses impulsionnelles sont peut-être biaisées et ne sont pas robustes à cause de la difficulté à bien identifier les relations de cointégration dans le modèle à correction d'erreur du Canada et en particulier du Québec.

Suggested Citation

  • Mara Gloria & François Vaillancourt & Pedro Lages Dos Santos, 2012. "Les déterminants macroéconomiques de l'épargne québécoise et canadienne – une étude économétrique," CIRANO Project Reports 2012rp-01, CIRANO.
  • Handle: RePEc:cir:cirpro:2012rp-01
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2012RP-01.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, Joon Y, 1992. "Canonical Cointegrating Regressions," Econometrica, Econometric Society, vol. 60(1), pages 119-143, January.
    2. Phelim Boyle & John Murray, 1979. "Social Security Wealth and Private Saving in Canada," Canadian Journal of Economics, Canadian Economics Association, vol. 12(3), pages 456-468, August.
    3. Stock, James H & Watson, Mark W, 1993. "A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems," Econometrica, Econometric Society, vol. 61(4), pages 783-820, July.
    4. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    5. Boskin, Michael J, 1988. "Tax Policy and Economic Growth: Lessons from the 1980s," Journal of Economic Perspectives, American Economic Association, vol. 2(4), pages 71-97, Fall.
    6. repec:bla:econom:v:50:y:1983:i:197:p:63-69 is not listed on IDEAS
    7. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    8. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    9. Perron, P, 1993. "Erratum [The Great Crash, the Oil Price Shock and the Unit Root Hypothesis]," Econometrica, Econometric Society, vol. 61(1), pages 248-249, January.
    10. MacKinnon, James G, 1996. "Numerical Distribution Functions for Unit Root and Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 601-618, Nov.-Dec..
    11. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(1), pages 99-125.
    12. Saikkonen, Pentti, 1992. "Estimation and Testing of Cointegrated Systems by an Autoregressive Approximation," Econometric Theory, Cambridge University Press, vol. 8(1), pages 1-27, March.
    13. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    14. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    15. von Furstenberg, George M, 1980. "Private Saving," American Economic Review, American Economic Association, vol. 70(2), pages 177-181, May.
    16. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ansgar Belke & Robert Czudaj, 2010. "Is Euro Area Money Demand (Still) Stable? Cointegrated VAR Versus Single Equation Techniques," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 56(4), pages 285-315.
    2. Skare, Marinko & Ozturk, Ilhan & Porada-Rochoń, Małgorzata & Stjepanovic, Sasa, 2024. "Energy as the new frontier: Dynamic panel data analysis revealing energy's transformative role in economic growth and technological progress," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    3. Fakhri J. Hasanov & Lester C. Hunt & Ceyhun I. Mikayilov, 2016. "Modeling and Forecasting Electricity Demand in Azerbaijan Using Cointegration Techniques," Energies, MDPI, vol. 9(12), pages 1-31, December.
    4. Olimpia Neagu, 2019. "The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    5. David Greasley & Les Oxley, 2010. "Cliometrics And Time Series Econometrics: Some Theory And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 24(5), pages 970-1042, December.
    6. Minxian, Yang, 1998. "System estimators of cointegrating matrix in absence of normalising information," Journal of Econometrics, Elsevier, vol. 85(2), pages 317-337, August.
    7. Ibhagui, Oyakhilome W., 2019. "Does the long-run monetary model hold for Sub-Saharan Africa? A time series and panel-cointegration study," Research in International Business and Finance, Elsevier, vol. 47(C), pages 279-303.
    8. Hasanov, Fakhri J. & Shannak, Sa'd, 2020. "Electricity incentives for agriculture in Saudi Arabia. Is that relevant to remove them?," Energy Policy, Elsevier, vol. 144(C).
    9. Dina Azhgaliyeva, 2013. "What Makes Oil Revenue Funds Effective," International Conference on Energy, Regional Integration and Socio-economic Development 6023, EcoMod.
    10. Ramiz Rahmanov, 2013. "Stock Market Wealth Effects in Emerging Economies of Eastern Europe: Evidence from Russia and Ukraine," Research in Economics and Business: Central and Eastern Europe, Tallinn School of Economics and Business Administration, Tallinn University of Technology, vol. 5(1).
    11. Samih Antoine Azar & Angelic Salha, 2017. "The Bias in the Long Run Relation between the Prices of BRENT and West Texas Intermediate Crude Oils," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 44-54.
    12. André Madeira & Victor Moutinho & José Alberto Fuinhas, 2021. "Does waiting times decrease or increase operational costs in short and long-term? Evidence from Portuguese public hospitals," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(8), pages 1195-1216, November.
    13. Vicente Esteve, 2004. "Política fiscal y productividad del trabajo en la economía española: un análisis de series temporales," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 19(1), pages 3-29, June.
    14. Daniel Tomić Jurica Šimurina Luka Jovanov, 2020. "The Nexus between Economic Sentiment Indicator and Gross Domestic Product; a Panel Cointegration Analysis," Zagreb International Review of Economics and Business, Faculty of Economics and Business, University of Zagreb, vol. 23(1), pages 121-140, May.
    15. Jeyhun I. Mikayilov & Marzio Galeotti & Fakhri J. Hasanov, 2018. "The Impact of Economic Growth on CO2 Emissions in Azerbaijan," IEFE Working Papers 102, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    16. Hasanov, Fakhri J. & Bulut, Cihan & Suleymanov, Elchin, 2016. "Do population age groups matter in the energy use of the oil-exporting countries?," Economic Modelling, Elsevier, vol. 54(C), pages 82-99.
    17. Igor Petruška & Eva Litavcová & Jana Chovancová, 2022. "Impact of Renewable Energy Sources and Nuclear Energy on CO 2 Emissions Reductions—The Case of the EU Countries," Energies, MDPI, vol. 15(24), pages 1-23, December.
    18. Ogali, Oscar I.O. & Okoro, Emeka E. & Olafuyi, Saburi G., 2023. "Assessing consensus on nexus between natural gas consumption and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    19. Zhan, Minghua & Wang, Lijun & Zhan, Shuwei & Lu, Yao, 2023. "Does digital finance change the stability of money demand function? Evidence from China," Journal of Asian Economics, Elsevier, vol. 88(C).
    20. Alessandro Bellocchi & Edgar J. Sanchez Carrera & Giuseppe Travaglini, 2021. "What drives TFP long-run dynamics in five large European economies?," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 38(2), pages 569-595, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirpro:2012rp-01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.