IDEAS home Printed from https://ideas.repec.org/p/cgc/wpaper/002.html
   My bibliography  Save this paper

Heteroskedasticity of Unknown Form in Spatial Autoregressive Models with Moving Average Disturbance Term

Author

Listed:
  • Osman Dogan

    (Ph.D. Program in Economics, City University of New York Graduate Center)

Abstract

In this study, I investigate the necessary condition for consistency of the maximum likelihood estimator (MLE) of spatial models with a spatial moving average process in the disturbance term. I show that the MLE of spatial autoregressive and spatial moving average parameters is generally inconsistent when heteroskedasticity is not considered in the estimation. I also show that the MLE of parameters of exogenous variables is inconsistent and determine its asymptotic bias. I provide simulation results to evaluate the performance of the MLE. The simulation results indicate that the MLE imposes a substantial amount of bias on both autoregressive and moving average parameters.

Suggested Citation

  • Osman Dogan, 2013. "Heteroskedasticity of Unknown Form in Spatial Autoregressive Models with Moving Average Disturbance Term," Working Papers 2, City University of New York Graduate Center, Ph.D. Program in Economics.
  • Handle: RePEc:cgc:wpaper:002
    as

    Download full text from publisher

    File URL: http://wfs.gc.cuny.edu/Economics/RePEc/cgc/wpaper/CUNYGC-WP002R.pdf
    File Function: Revised version, December 2014
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Arnold, Matthias & Wied, Dominik, 2010. "Improved GMM estimation of the spatial autoregressive error model," Economics Letters, Elsevier, vol. 108(1), pages 65-68, July.
    3. Bernard Fingleton, 2008. "A Generalized Method of Moments Estimator for a Spatial Panel Model with an Endogenous Spatial Lag and Spatial Moving Average Errors," Spatial Economic Analysis, Taylor & Francis Journals, vol. 3(1), pages 27-44.
    4. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    5. L W Hepple, 1995. "Bayesian Techniques in Spatial and Network Econometrics: 2. Computational Methods and Algorithms," Environment and Planning A, , vol. 27(4), pages 615-644, April.
    6. Bernard Fingleton, 2009. "A generalized method of moments estimator for a spatial model with moving average errors, with application to real estate prices," Studies in Empirical Economics, in: Giuseppe Arbia & Badi H. Baltagi (ed.), Spatial Econometrics, pages 35-57, Springer.
    7. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    8. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    9. Abadir,Karim M. & Magnus,Jan R., 2005. "Matrix Algebra," Cambridge Books, Cambridge University Press, number 9780521537469, November.
    10. Lee, Lung-fei, 2007. "The method of elimination and substitution in the GMM estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 140(1), pages 155-189, September.
    11. Elhorst, J. Paul & Lacombe, Donald J. & Piras, Gianfranco, 2012. "On model specification and parameter space definitions in higher order spatial econometric models," Regional Science and Urban Economics, Elsevier, vol. 42(1-2), pages 211-220.
    12. Harry H. Kelejian & Dennis P. Robinson, 1993. "A Suggested Method Of Estimation For Spatial Interdependent Models With Autocorrelated Errors, And An Application To A County Expenditure Model," Papers in Regional Science, Wiley Blackwell, vol. 72(3), pages 297-312, July.
    13. Baltagi, Badi H. & Liu, Long, 2011. "An improved generalized moments estimator for a spatial moving average error model," Economics Letters, Elsevier, vol. 113(3), pages 282-284.
    14. Manfred M. Fischer & Peter Nijkamp (ed.), 2014. "Handbook of Regional Science," Springer Books, Springer, edition 127, number 978-3-642-23430-9, March.
    15. repec:cup:cbooks:9780521822893 is not listed on IDEAS
    16. L W Hepple, 1995. "Bayesian Techniques in Spatial and Network Econometrics: 1. Model Comparison and Posterior Odds," Environment and Planning A, , vol. 27(3), pages 447-469, March.
    17. Liu, Xiaodong & Lee, Lung-fei & Bollinger, Christopher R., 2010. "An efficient GMM estimator of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 159(2), pages 303-319, December.
    18. Lee, Lung-fei, 2007. "Identification and estimation of econometric models with group interactions, contextual factors and fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 333-374, October.
    19. Osman Dogan & Suleyman Taspinar, 2013. "GMM Estimation of Spatial Autoregressive Models with Autoregressive and Heteroskedastic Disturbances," Working Papers 1, City University of New York Graduate Center, Ph.D. Program in Economics.
    20. Lee, Lung-fei, 2007. "GMM and 2SLS estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 137(2), pages 489-514, April.
    21. David M. Drukker & Peter Egger & Ingmar R. Prucha, 2013. "On Two-Step Estimation of a Spatial Autoregressive Model with Autoregressive Disturbances and Endogenous Regressors," Econometric Reviews, Taylor & Francis Journals, vol. 32(5-6), pages 686-733, August.
    22. James P. Lesage, 1997. "Bayesian Estimation of Spatial Autoregressive Models," International Regional Science Review, , vol. 20(1-2), pages 113-129, April.
    23. Lee, Lung-fei & Liu, Xiaodong, 2010. "Efficient Gmm Estimation Of High Order Spatial Autoregressive Models With Autoregressive Disturbances," Econometric Theory, Cambridge University Press, vol. 26(1), pages 187-230, February.
    24. Lin, Xu & Lee, Lung-fei, 2010. "GMM estimation of spatial autoregressive models with unknown heteroskedasticity," Journal of Econometrics, Elsevier, vol. 157(1), pages 34-52, July.
    25. Lung-fei Lee & Xiaodong Liu & Xu Lin, 2010. "Specification and estimation of social interaction models with network structures," Econometrics Journal, Royal Economic Society, vol. 13(2), pages 145-176, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Otto, Philipp & Sibbertsen, Philipp, 2023. "Spatial autoregressive fractionally integrated moving average model," Hannover Economic Papers (HEP) dp-712, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    2. Doğan, Osman & Taşpınar, Süleyman, 2013. "GMM estimation of spatial autoregressive models with moving average disturbances," Regional Science and Urban Economics, Elsevier, vol. 43(6), pages 903-926.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doğan, Osman & Taşpınar, Süleyman, 2013. "GMM estimation of spatial autoregressive models with moving average disturbances," Regional Science and Urban Economics, Elsevier, vol. 43(6), pages 903-926.
    2. Doğan, Osman & Taşpınar, Süleyman, 2014. "Spatial autoregressive models with unknown heteroskedasticity: A comparison of Bayesian and robust GMM approach," Regional Science and Urban Economics, Elsevier, vol. 45(C), pages 1-21.
    3. Jörg Breitung & Christoph Wigger, 2018. "Alternative GMM estimators for spatial regression models," Spatial Economic Analysis, Taylor & Francis Journals, vol. 13(2), pages 148-170, April.
    4. Liu, Xiaodong & Lee, Lung-fei, 2010. "GMM estimation of social interaction models with centrality," Journal of Econometrics, Elsevier, vol. 159(1), pages 99-115, November.
    5. Shew Fan Liu & Zhenlin Yang, 2015. "Asymptotic Distribution and Finite Sample Bias Correction of QML Estimators for Spatial Error Dependence Model," Econometrics, MDPI, vol. 3(2), pages 1-36, May.
    6. Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2022. "Bayesian estimation of multivariate panel probits with higher‐order network interdependence and an application to firms' global market participation in Guangdong," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1356-1378, November.
    7. Debarsy, Nicolas & Jin, Fei & Lee, Lung-fei, 2015. "Large sample properties of the matrix exponential spatial specification with an application to FDI," Journal of Econometrics, Elsevier, vol. 188(1), pages 1-21.
    8. Jin, Fei & Lee, Lung-fei, 2019. "GEL estimation and tests of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 208(2), pages 585-612.
    9. Jin, Fei & Lee, Lung-fei, 2012. "Approximated likelihood and root estimators for spatial interaction in spatial autoregressive models," Regional Science and Urban Economics, Elsevier, vol. 42(3), pages 446-458.
    10. Debarsy, Nicolas & Ertur, Cem, 2019. "Interaction matrix selection in spatial autoregressive models with an application to growth theory," Regional Science and Urban Economics, Elsevier, vol. 75(C), pages 49-69.
    11. Lee, Lung-fei & Yu, Jihai, 2014. "Efficient GMM estimation of spatial dynamic panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 180(2), pages 174-197.
    12. Moscone, Francesco & Tosetti, Elisa & Canepa, Alessandra, 2014. "Real estate market and financial stability in US metropolitan areas: A dynamic model with spatial effects," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 129-146.
    13. Wang, Wei & Lee, Lung-Fei & Bao, Yan, 2018. "GMM estimation of the spatial autoregressive model in a system of interrelated networks," Regional Science and Urban Economics, Elsevier, vol. 69(C), pages 167-198.
    14. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    15. Seya, Hajime & Yamagata, Yoshiki & Tsutsumi, Morito, 2013. "Automatic selection of a spatial weight matrix in spatial econometrics: Application to a spatial hedonic approach," Regional Science and Urban Economics, Elsevier, vol. 43(3), pages 429-444.
    16. Cynthia Fan Yang, 2021. "Common factors and spatial dependence: an application to US house prices," Econometric Reviews, Taylor & Francis Journals, vol. 40(1), pages 14-50, January.
    17. Liu, Xiaodong & Saraiva, Paulo, 2015. "GMM estimation of SAR models with endogenous regressors," Regional Science and Urban Economics, Elsevier, vol. 55(C), pages 68-79.
    18. Liu, Shew Fan & Yang, Zhenlin, 2015. "Modified QML estimation of spatial autoregressive models with unknown heteroskedasticity and nonnormality," Regional Science and Urban Economics, Elsevier, vol. 52(C), pages 50-70.
    19. Lin, Xu & Lee, Lung-fei, 2010. "GMM estimation of spatial autoregressive models with unknown heteroskedasticity," Journal of Econometrics, Elsevier, vol. 157(1), pages 34-52, July.
    20. Bao, Yong, 2024. "Estimating spatial autoregressions under heteroskedasticity without searching for instruments," Regional Science and Urban Economics, Elsevier, vol. 106(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cgc:wpaper:002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David A. Jaeger (email available below). General contact details of provider: https://edirc.repec.org/data/dgcunus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.