IDEAS home Printed from https://ideas.repec.org/p/cgc/wpaper/002.html
   My bibliography  Save this paper

Heteroskedasticity of Unknown Form in Spatial Autoregressive Models with Moving Average Disturbance Term

Author

Listed:
  • Osman Dogan

    () (Ph.D. Program in Economics, City University of New York Graduate Center)

Abstract

In this study, I investigate the necessary condition for consistency of the maximum likelihood estimator (MLE) of spatial models with a spatial moving average process in the disturbance term. I show that the MLE of spatial autoregressive and spatial moving average parameters is generally inconsistent when heteroskedasticity is not considered in the estimation. I also show that the MLE of parameters of exogenous variables is inconsistent and determine its asymptotic bias. I provide simulation results to evaluate the performance of the MLE. The simulation results indicate that the MLE imposes a substantial amount of bias on both autoregressive and moving average parameters.

Suggested Citation

  • Osman Dogan, 2013. "Heteroskedasticity of Unknown Form in Spatial Autoregressive Models with Moving Average Disturbance Term," Working Papers 2, City University of New York Graduate Center, Ph.D. Program in Economics.
  • Handle: RePEc:cgc:wpaper:002
    as

    Download full text from publisher

    File URL: http://wfs.gc.cuny.edu/Economics/RePEc/cgc/wpaper/CUNYGC-WP002R.pdf
    File Function: Revised version, December 2014
    Download Restriction: no

    References listed on IDEAS

    as
    1. Arnold, Matthias & Wied, Dominik, 2010. "Improved GMM estimation of the spatial autoregressive error model," Economics Letters, Elsevier, vol. 108(1), pages 65-68, July.
    2. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    3. Abadir,Karim M. & Magnus,Jan R., 2005. "Matrix Algebra," Cambridge Books, Cambridge University Press, number 9780521537469, May.
    4. Elhorst, J. Paul & Lacombe, Donald J. & Piras, Gianfranco, 2012. "On model specification and parameter space definitions in higher order spatial econometric models," Regional Science and Urban Economics, Elsevier, vol. 42(1-2), pages 211-220.
    5. Baltagi, Badi H. & Liu, Long, 2011. "An improved generalized moments estimator for a spatial moving average error model," Economics Letters, Elsevier, vol. 113(3), pages 282-284.
    6. repec:cup:cbooks:9780521822893 is not listed on IDEAS
    7. Liu, Xiaodong & Lee, Lung-fei & Bollinger, Christopher R., 2010. "An efficient GMM estimator of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 159(2), pages 303-319, December.
    8. Osman Dogan & Suleyman Taspinar, 2013. "GMM Estimation of Spatial Autoregressive Models with Autoregressive and Heteroskedastic Disturbances," Working Papers 1, City University of New York Graduate Center, Ph.D. Program in Economics.
    9. James P. Lesage, 1997. "Bayesian Estimation of Spatial Autoregressive Models," International Regional Science Review, , vol. 20(1-2), pages 113-129, April.
    10. Lee, Lung-fei & Liu, Xiaodong, 2010. "Efficient Gmm Estimation Of High Order Spatial Autoregressive Models With Autoregressive Disturbances," Econometric Theory, Cambridge University Press, vol. 26(01), pages 187-230, February.
    11. Lin, Xu & Lee, Lung-fei, 2010. "GMM estimation of spatial autoregressive models with unknown heteroskedasticity," Journal of Econometrics, Elsevier, vol. 157(1), pages 34-52, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Doğan, Osman & Taşpınar, Süleyman, 2013. "GMM estimation of spatial autoregressive models with moving average disturbances," Regional Science and Urban Economics, Elsevier, vol. 43(6), pages 903-926.

    More about this item

    Keywords

    spatial dependence; spatial moving average; spatial autoregressive; maximum likelihood estimator; MLE; asymptotics; heteroskedasticity; SARMA(1; 1);

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cgc:wpaper:002. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David A. Jaeger). General contact details of provider: http://edirc.repec.org/data/dgcunus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.