IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v108y2010i1p65-68.html
   My bibliography  Save this article

Improved GMM estimation of the spatial autoregressive error model

Author

Listed:
  • Arnold, Matthias
  • Wied, Dominik

Abstract

We suggest an improved GMM estimator for the autoregressive parameter of a spatial autoregressive error model by taking into account that unobservable regression disturbances are different from observable regression residuals.

Suggested Citation

  • Arnold, Matthias & Wied, Dominik, 2010. "Improved GMM estimation of the spatial autoregressive error model," Economics Letters, Elsevier, vol. 108(1), pages 65-68, July.
  • Handle: RePEc:eee:ecolet:v:108:y:2010:i:1:p:65-68
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1765(10)00129-1
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Viliam Druska & William C. Horrace, 2004. "Generalized Moments Estimation for Spatial Panel Data: Indonesian Rice Farming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(1), pages 185-198.
    3. Kelejian, Harry H. & Prucha, Ingmar R., 2004. "Estimation of simultaneous systems of spatially interrelated cross sectional equations," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 27-50.
    4. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2006. "The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 113-125, February.
    5. Patrik Tingvall, 2004. "The dynamics of European industrial structure," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 140(4), pages 665-687, December.
    6. Luc Anselin & Rodolfo Bongiovanni & Jess Lowenberg-DeBoer, 2004. "A Spatial Econometric Approach to the Economics of Site-Specific Nitrogen Management in Corn Production," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(3), pages 675-687.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Doğan, Osman & Taşpınar, Süleyman, 2013. "GMM estimation of spatial autoregressive models with moving average disturbances," Regional Science and Urban Economics, Elsevier, vol. 43(6), pages 903-926.
    2. Matthias Arnold & Dominik Wied, 2014. "Improved GMM estimation of random effects panel data models with spatially correlated error components," Papers in Regional Science, Wiley Blackwell, vol. 93(1), pages 77-99, March.
    3. Baltagi, Badi H. & Liu, Long, 2011. "An improved generalized moments estimator for a spatial moving average error model," Economics Letters, Elsevier, vol. 113(3), pages 282-284.
    4. Jörg Breitung & Christoph Wigger, 2017. "Alternative GMM estimators for spatial regression models," Working Paper Series in Economics 89, University of Cologne, Department of Economics.
    5. Osman Dogan, 2013. "Heteroskedasticity of Unknown Form in Spatial Autoregressive Models with Moving Average Disturbance Term," Working Papers 2, City University of New York Graduate Center, Ph.D. Program in Economics.
    6. Osman Doğan, 2015. "Heteroskedasticity of Unknown Form in Spatial Autoregressive Models with a Moving Average Disturbance Term," Econometrics, MDPI, Open Access Journal, vol. 3(1), pages 1-27, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:108:y:2010:i:1:p:65-68. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.