IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt6wk3t20s.html
   My bibliography  Save this paper

Spatial Models of Morning Commute Consistent with Realistic Traffic Behavior

Author

Listed:
  • Lago, Alejandro

Abstract

Urban planners are increasingly concerned about the sprawling suburban development in metropolitan areas around the world, which they often blame for growing traffic congestion and excessive highway investment needs. This dissertation seeks to shed light on this issue by studying the relationship between morning commute congestion and urban form. The causes and consequences of traffic congestion have been extensively studied in the economics and engineering literatures. Unfortunately, most conclusions have been drawn from very idealized models, which either fail to consider adequately the spatial nature of congestion, by neglecting the effects of physical queues and merging interactions, or overlook dynamic aspects, such as commuters' departure time adaptation during the rush-hour. To better capture the spatial-dynamic nature of morning commute traffc, this dissertation proposes a new analytical framework that explicitly incorporates spatially distributed commuter origins, realistic traffic behavior and commuter timing decisions. The work combines the departure-time equilibrium theory (as first proposed by Vickrey [1969]) with the spatial model of traffic dynamics of Newell [1993] and the model of merge traffic interactions of Daganzo [1994, 1995a]. Focus is placed on idealized urban configurations, where traffic behavior can be studied analytically and general insights can be gained. We first study the equilibrium problem in a stylized two-origin network. This enables us to understand the fundamental role of merging bottlenecks and queue spillovers when commuters have different origins. The analysis is then extended to model congestion behavior in long freeway corridors and monocentric cities. We develop an exact procedure to solve the dynamic departure-time equilibrium for single-destination freeway tree networks. Solutions are characterized for cases with and without an alternative street network. The results show that the location-based congestion cost is very dependent on the spatial behavior of queues and that congestion can be reduced by altering the freeway access priorities given to different origins. At the same time, urban sprawl is shown to contribute not only to larger travelled distances but also to increased overall delays. Sprawl effects, however, are not as severe as often assumed. We finally propose some closed-form continuous approximations for the location-based congestion cost. These formulae provide an improved and simple representation of the dependence of congestion on the spatial distribution of population that can be easily incorporated to study policy issues. The design of more effective measures to reduce congestion and control urban development is an immediate example.

Suggested Citation

  • Lago, Alejandro, 2003. "Spatial Models of Morning Commute Consistent with Realistic Traffic Behavior," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6wk3t20s, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt6wk3t20s
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/6wk3t20s.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    2. Byung-Wook Wie & Roger L. Tobin & Terry L. Friesz & David Bernstein, 1995. "A Discrete Time, Nested Cost Operator Approach to the Dynamic Network User Equilibrium Problem," Transportation Science, INFORMS, vol. 29(1), pages 79-92, February.
    3. Wheaton, William C., 1998. "Land Use and Density in Cities with Congestion," Journal of Urban Economics, Elsevier, vol. 43(2), pages 258-272, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gonzales, Eric Justin, 2011. "Allocation of Space and the Costs of Multimodal Transport in Cities," University of California Transportation Center, Working Papers qt7s28n4nj, University of California Transportation Center.
    2. Ramadurai, Gitakrishnan & Ukkusuri, Satish V. & Zhao, Jinye & Pang, Jong-Shi, 2010. "Linear complementarity formulation for single bottleneck model with heterogeneous commuters," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 193-214, February.
    3. Gonzales, Eric Justin, 2011. "Allocation of Space and the Costs of Multimodal Transport in Cities," University of California Transportation Center, Working Papers qt07x7h9pg, University of California Transportation Center.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lago, Alejandro, 2003. "Spatial Models of Morning Commute Consistent with Realistic Traffic Behavior," University of California Transportation Center, Working Papers qt4nd315bv, University of California Transportation Center.
    2. Zhang, Wenjia & Kockelman, Kara M., 2016. "Optimal policies in cities with congestion and agglomeration externalities: Congestion tolls, labor subsidies, and place-based strategies," Journal of Urban Economics, Elsevier, vol. 95(C), pages 64-86.
    3. Takayama, Yuki, 2018. "Time-varying congestion tolling and urban spatial structure," MPRA Paper 89896, University Library of Munich, Germany.
    4. Xu, Shu-Xian & Liu, Ronghui & Liu, Tian-Liang & Huang, Hai-Jun, 2018. "Pareto-improving policies for an idealized two-zone city served by two congestible modes," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 876-891.
    5. Takayama, Yuki & Kuwahara, Masao, 2017. "Bottleneck congestion and residential location of heterogeneous commuters," Journal of Urban Economics, Elsevier, vol. 100(C), pages 65-79.
    6. Fournier, Nicholas, 2021. "Hybrid pedestrian and transit priority zoning policies in an urban street network: Evaluating network traffic flow impacts with analytical approximation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 254-274.
    7. Sergejs Gubins & Erik T. Verhoef, 2012. "Dynamic Congestion and Urban Equilibrium," Tinbergen Institute Discussion Papers 12-137/VIII, Tinbergen Institute.
    8. Lu, Gongyuan & Nie, Yu(Marco) & Liu, Xiaobo & Li, Denghui, 2019. "Trajectory-based traffic management inside an autonomous vehicle zone," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 76-98.
    9. Takayama, Yuki, 2020. "Who gains and who loses from congestion pricing in a monocentric city with a bottleneck?," Economics of Transportation, Elsevier, vol. 24(C).
    10. Gubins, Sergejs & Verhoef, Erik T., 2014. "Dynamic bottleneck congestion and residential land use in the monocentric city," Journal of Urban Economics, Elsevier, vol. 80(C), pages 51-61.
    11. Anas, Alex, 2012. "The optimal pricing, finance and supply of urban transportation in general equilibrium: A theoretical exposition," Economics of Transportation, Elsevier, vol. 1(1), pages 64-76.
    12. Gonzales, Eric Justin, 2011. "Allocation of Space and the Costs of Multimodal Transport in Cities," University of California Transportation Center, Working Papers qt7s28n4nj, University of California Transportation Center.
    13. Li-Jun Tian & Hai-Jun Huang & Zi-You Gao, 2012. "A Cumulative Perceived Value-Based Dynamic User Equilibrium Model Considering the Travelers’ Risk Evaluation on Arrival Time," Networks and Spatial Economics, Springer, vol. 12(4), pages 589-608, December.
    14. Fosgerau, Mogens & Kim, Jinwon, 2019. "Commuting and land use in a city with bottlenecks: Theory and evidence," Regional Science and Urban Economics, Elsevier, vol. 77(C), pages 182-204.
    15. Ross, Stephen L. & Yinger, John, 2000. "Timing Equilibria in an Urban Model with Congestion," Journal of Urban Economics, Elsevier, vol. 47(3), pages 390-413, May.
    16. Fosgerau, Mogens & Kim, Jinwon & Ranjan, Abhishek, 2018. "Vickrey meets Alonso: Commute scheduling and congestion in a monocentric city," Journal of Urban Economics, Elsevier, vol. 105(C), pages 40-53.
    17. Yu Nie & H. Zhang, 2010. "Solving the Dynamic User Optimal Assignment Problem Considering Queue Spillback," Networks and Spatial Economics, Springer, vol. 10(1), pages 49-71, March.
    18. Gonzales, Eric Justin, 2011. "Allocation of Space and the Costs of Multimodal Transport in Cities," University of California Transportation Center, Working Papers qt07x7h9pg, University of California Transportation Center.
    19. de Palma, André & Lindsey, Robin, 2001. "Optimal timetables for public transportation," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 789-813, September.
    20. Simon P. Anderson & Régis Renault, 2011. "Price Discrimination," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 22, Edward Elgar Publishing.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt6wk3t20s. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.