IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt21c6p765.html
   My bibliography  Save this paper

Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems

Author

Listed:
  • Wang, Guihua
  • Ogden, Joan M
  • Chang, Daniel P.Y.

Abstract

Hydrogen has been proposed as a low polluting alternative transportation fuel that could help improve urban air quality. This paper examines the potential impact of introducing a hydrogen-based transportation system on urban ambient ozone concentrations. This paper considers two scenarios, where significant numbers of new hydrogen vehicles are added to a constant number of gasoline vehicles. In our scenarios hydrogen fuel cell vehicles (HFCVs) are introduced in Sacramento, California at market penetrations of 9% and 20%. From a life cycle analysis (LCA) perspective, considering all the emissions involved in producing, transporting, and using hydrogen, this research compares three hypothetical natural gas to hydrogen pathways: (1) on-site hydrogen production; (2) central hydrogen production with pipeline delivery; and (3) central hydrogen production with liquid hydrogen truck delivery. Using a regression model, this research shows that the daily maximum temperature correlates well with atmospheric ozone formation. However, increases in initial VOC and NOx concentrations do not necessarily increase the peak ozone concentration, and may even cause it to decrease. It is found that ozone formation is generally limited by NOx in the summer and is mostly limited by VOC in the fall in Sacramento. Of the three hydrogen pathways, the truck delivery pathway contributes the most to ozone precursor emissions. Ozone precursor emissions from the truck pathway at 9% market penetration can cause additional 3-h average VOC (or NOx) concentrations up to approximately 0.05% (or 1%) of current pollution levels, and at 20% market penetration up to approximately 0.1% (or 2%) of current pollution levels. However, all of the hydrogen pathways would result in very small (either negative or positive) changes in ozone air quality. In some cases they will result in worse ozone air quality (mostly in July, August, and September), and in some cases they will result in better ozone air quality (mostly in October). The truck pathway tends to cause a much wider fluctuation in degradation or improvement of ozone air quality: percentage changes in peak ozone concentrations are approximately −0.01% to 0.04% for the assumed 9% market penetration, and approximately −0.03% to 0.1% for the 20% market penetration. Moreover, the 20% on-site pathway occasionally results in a decrease of about −0.1% of baseline ozone pollution. Compared to the current ambient pollution level, all three hydrogen pathways are unlikely to cause a serious ozone problem for market penetration levels of HFCVs in the 9–20% range.

Suggested Citation

  • Wang, Guihua & Ogden, Joan M & Chang, Daniel P.Y., 2007. "Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems," Institute of Transportation Studies, Working Paper Series qt21c6p765, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt21c6p765
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/21c6p765.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:cdl:itsdav:qt8nf3606c is not listed on IDEAS
    2. repec:cdl:itsdav:qt4cv6x16h is not listed on IDEAS
    3. repec:cdl:itsdav:qt4fs2b9bv is not listed on IDEAS
    4. repec:cdl:itsdav:qt5x20v080 is not listed on IDEAS
    5. repec:cdl:uctcwp:qt5jm6d2tc is not listed on IDEAS
    6. Ogden, Joan M. & Williams, Robert H. & Larson, Eric D., 2004. "Societal lifecycle costs of cars with alternative fuels/engines," Energy Policy, Elsevier, vol. 32(1), pages 7-27, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ercolino, Giuliana & Ashraf, Muhammad A. & Specchia, Vito & Specchia, Stefania, 2015. "Performance evaluation and comparison of fuel processors integrated with PEM fuel cell based on steam or autothermal reforming and on CO preferential oxidation or selective methanation," Applied Energy, Elsevier, vol. 143(C), pages 138-153.
    2. Konstantinos Metaxoglou & Aaron Smith, 2020. "Productivity Spillovers From Pollution Reduction: Reducing Coal Use Increases Crop Yields," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 259-280, January.
    3. Wang, Guihua & Bai, Song & Ogden, Joan M., 2009. "Identifying Contributions of On-road Motor Vehicles to Urban Air Pollution Using Travel Demand Model Data," Institute of Transportation Studies, Working Paper Series qt2700q8x1, Institute of Transportation Studies, UC Davis.
    4. Sperling, Dan & Wang, Guihua & Ogden, Joan M., 2008. "Comparing air quality impacts of hydrogen and gasoline," Institute of Transportation Studies, Working Paper Series qt9215h1m8, Institute of Transportation Studies, UC Davis.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:cdl:itsdav:qt931583w4 is not listed on IDEAS
    2. Brand, Christian, 2016. "Beyond ‘Dieselgate’: Implications of unaccounted and future air pollutant emissions and energy use for cars in the United Kingdom," Energy Policy, Elsevier, vol. 97(C), pages 1-12.
    3. Iogansen, Xiatian & Wang, Kailai & Bunch, David & Matson, Grant & Circella, Giovanni, 2023. "Deciphering the factors associated with adoption of alternative fuel vehicles in California: An investigation of latent attitudes, socio-demographics, and neighborhood effects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    4. Solomon, Barry D. & Banerjee, Abhijit, 2006. "Erratum to "A global survey of hydrogen energy research, development and policy": [Energy Policy 34 (2006) 781-792]," Energy Policy, Elsevier, vol. 34(11), pages 1318-1208, July.
    5. Oskar Lecuyer & Adrien Vogt-Schilb, 2013. "Assessing and ordering investments in polluting fossil-fueled and zero-carbon capital," CIRED Working Papers hal-00850680, HAL.
    6. Clark II, Woodrow W. & Rifkin, Jeremy, 2006. "A green hydrogen economy," Energy Policy, Elsevier, vol. 34(17), pages 2630-2639, November.
    7. Lin, Zhenhong & Fan, Yueyue & Ogden, Joan M & Chen, Chien-Wei, 2008. "Optimized Pathways for Regional H2 Infrastructure Transitions: A Case Study for Southern California," Institute of Transportation Studies, Working Paper Series qt9mk5n8jn, Institute of Transportation Studies, UC Davis.
    8. Anders Chr. Hansen, 2010. "The Contributions of the Hydrogen Transition to the Goals of the EU Energy and Climate Policy," Chapters, in: François Lévêque & Jean-Michel Glachant & Julián Barquín & Christian von Hirschhausen & Franziska Ho (ed.), Security of Energy Supply in Europe, chapter 12, Edward Elgar Publishing.
    9. repec:cdl:itsdav:qt9hx260wp is not listed on IDEAS
    10. Lin, Zhenhong & Ogden, Joan & Fan, Yueyue & Chen, Chien-Wei, 2009. "The Fuel-Travel-Back Approach to Hydrogen Station Siting," Institute of Transportation Studies, Working Paper Series qt14p44238, Institute of Transportation Studies, UC Davis.
    11. Clara Pardo Martínez, 2011. "Energy efficiency in the automotive industry evidence from Germany and Colombia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(2), pages 367-383, April.
    12. Hellgren, Jonas, 2007. "Life cycle cost analysis of a car, a city bus and an intercity bus powertrain for year 2005 and 2020," Energy Policy, Elsevier, vol. 35(1), pages 39-49, January.
    13. Siti Indati Mustapa & Bamidele Victor Ayodele & Waznatol Widad Mohamad Ishak & Freida Ozavize Ayodele, 2020. "Evaluation of Cost Competitiveness of Electric Vehicles in Malaysia Using Life Cycle Cost Analysis Approach," Sustainability, MDPI, vol. 12(13), pages 1-14, June.
    14. Jorgensen, K., 2008. "Technologies for electric, hybrid and hydrogen vehicles: Electricity from renewable energy sources in transport," Utilities Policy, Elsevier, vol. 16(2), pages 72-79, June.
    15. repec:cdl:itsdav:qt0131v295 is not listed on IDEAS
    16. Colin J. Cockroft & Anthony D. Owen, 2007. "The Economics of Hydrogen Fuel Cell Buses," The Economic Record, The Economic Society of Australia, vol. 83(263), pages 359-370, December.
    17. repec:cdl:itsdav:qt4894t868 is not listed on IDEAS
    18. repec:cdl:itsdav:qt5w82s62b is not listed on IDEAS
    19. Schäfer, Andreas & Heywood, John B. & Weiss, Malcolm A., 2006. "Future fuel cell and internal combustion engine automobile technologies: A 25-year life cycle and fleet impact assessment," Energy, Elsevier, vol. 31(12), pages 2064-2087.
    20. Tseng, Hui-Kuan & Wu, Jy S. & Liu, Xiaoshuai, 2013. "Affordability of electric vehicles for a sustainable transport system: An economic and environmental analysis," Energy Policy, Elsevier, vol. 61(C), pages 441-447.
    21. Han Hao & Michael Wang & Yan Zhou & Hewu Wang & Minggao Ouyang, 2015. "Levelized costs of conventional and battery electric vehicles in china: Beijing experiences," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1229-1246, October.
    22. Mapemba, Lawrence D. & Epplin, Francis M. & Huhnke, Raymond L., 2006. "Environmental Consequences of Ethanol from Corn Grain, Ethanol from Lignocellulosic Biomass, and Conventional Gasoline," 2006 Annual meeting, July 23-26, Long Beach, CA 21034, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    23. Malte Schwoon, 2006. "Simulating the adoption of fuel cell vehicles," Journal of Evolutionary Economics, Springer, vol. 16(4), pages 435-472, October.
    24. Hansen, Anders Chr., 2010. "Will hydrogen be competitive in Europe without tax favours?," Energy Policy, Elsevier, vol. 38(10), pages 5346-5358, October.
    25. Lutsey, Nicholas P., 2008. "Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors," Institute of Transportation Studies, Working Paper Series qt5rd41433, Institute of Transportation Studies, UC Davis.

    More about this item

    Keywords

    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt21c6p765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.