IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt9215h1m8.html
   My bibliography  Save this paper

Comparing air quality impacts of hydrogen and gasoline

Author

Listed:
  • Sperling, Dan
  • Wang, Guihua
  • Ogden, Joan M.

Abstract

This paper uses a lifecycle approach to analyze potential air quality impacts of hydrogen and gasoline use in light duty vehicles. The analysis is conducted for scenarios in 2005 and 2025 in Sacramento, California for CO, NOx, VOC, and PM10. Three natural gas-based hydrogen supply pathways are analyzed: onsite hydrogen production via small-scale steam methane reforming (SMR), central large-scale hydrogen production via SMR with gaseous hydrogen pipeline delivery, and central hydrogen production via SMR with liquid hydrogen truck delivery. These are compared to gasoline pathways with current and advanced technologies, in terms of lifecycle air quality impacts. The centralized/pipeline hydrogen pathway reduces pollution the most, followed by the onsite hydrogen production pathway and the centralized hydrogen production with liquid hydrogen truck delivery. Gasoline pathway scenarios, even with advanced new gasoline vehicles, would lead to much higher ambient concentrations of pollutants than any of the hydrogen pathways, producing 273 times greater CO, 88 times greater VOC, 8 times greater PM10, and 3.5 times greater NOx concentrations than those caused by the centralized/pipeline hydrogen pathway.

Suggested Citation

  • Sperling, Dan & Wang, Guihua & Ogden, Joan M., 2008. "Comparing air quality impacts of hydrogen and gasoline," Institute of Transportation Studies, Working Paper Series qt9215h1m8, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt9215h1m8
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/9215h1m8.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McCubbin, Donald R. & Delucchi, Mark A., 1996. "The Social Cost of the Health Effects of Motor-Vehicle Air Pollution," University of California Transportation Center, Working Papers qt5jm6d2tc, University of California Transportation Center.
    2. Nicholas, Michael A, 2004. "Hydrogen Station Siting and Refueling Analysis Using Geographic Information Systems: A Case Study of Sacramento County," Institute of Transportation Studies, Working Paper Series qt6rd7f7cb, Institute of Transportation Studies, UC Davis.
    3. Delucchi, Mark, 2005. "A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles," Institute of Transportation Studies, Working Paper Series qt8nf3606c, Institute of Transportation Studies, UC Davis.
    4. Wang, Guihua & Ogden, Joan M & Nicholas, Michael A, 2007. "Lifecycle impacts of natural gas to hydrogen pathways on urban air quality," Institute of Transportation Studies, Working Paper Series qt4fs2b9bv, Institute of Transportation Studies, UC Davis.
    5. Wang, Guihua & Ogden, Joan M & Chang, Daniel P.Y., 2007. "Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems," Institute of Transportation Studies, Working Paper Series qt21c6p765, Institute of Transportation Studies, UC Davis.
    6. Wang, Guihua & Ogden, Joan M & Chang, Daniel P.Y., 2007. "Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems," Institute of Transportation Studies, Working Paper Series qt4894t868, Institute of Transportation Studies, UC Davis.
    7. Delucchi, Mark, 2005. "A Multi-Country Analysis Of Lifecycle Emissions From Transportation Fuels And Motor Vehicles," Institute of Transportation Studies, Working Paper Series qt5x20v080, Institute of Transportation Studies, UC Davis.
    8. Ogden, Joan M. & Williams, Robert H. & Larson, Eric D., 2004. "Societal lifecycle costs of cars with alternative fuels/engines," Energy Policy, Elsevier, vol. 32(1), pages 7-27, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bauer, Christian & Hofer, Johannes & Althaus, Hans-Jörg & Del Duce, Andrea & Simons, Andrew, 2015. "The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework," Applied Energy, Elsevier, vol. 157(C), pages 871-883.
    2. Kinnon, Michael Mac & Zhu, Shupeng & Carreras-Sospedra, Marc & Soukup, James V. & Dabdub, Donald & Samuelsen, G.S. & Brouwer, Jacob, 2019. "Considering future regional air quality impacts of the transportation sector," Energy Policy, Elsevier, vol. 124(C), pages 63-80.
    3. Ercolino, Giuliana & Ashraf, Muhammad A. & Specchia, Vito & Specchia, Stefania, 2015. "Performance evaluation and comparison of fuel processors integrated with PEM fuel cell based on steam or autothermal reforming and on CO preferential oxidation or selective methanation," Applied Energy, Elsevier, vol. 143(C), pages 138-153.
    4. Ziegler, Andreas, 2012. "Individual characteristics and stated preferences for alternative energy sources and propulsion technologies in vehicles: A discrete choice analysis for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1372-1385.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Guihua & Ogden, Joan M & Chang, Daniel P.Y., 2007. "Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems," Institute of Transportation Studies, Working Paper Series qt21c6p765, Institute of Transportation Studies, UC Davis.
    2. Wang, Guihua & Ogden, Joan M & Chang, Daniel P.Y., 2007. "Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems," Institute of Transportation Studies, Working Paper Series qt4894t868, Institute of Transportation Studies, UC Davis.
    3. Wang, Guihua, 2008. "Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways," Institute of Transportation Studies, Working Paper Series qt41x6t130, Institute of Transportation Studies, UC Davis.
    4. Ogden, Joan M & Yang, Christopher & Nicholas, Michael A, 2007. "Technical and Economic Assessment of Regional Hydrogen Transition Strategies," Institute of Transportation Studies, Working Paper Series qt6hh9h7df, Institute of Transportation Studies, UC Davis.
    5. Wang, Guihua & Bai, Song & Ogden, Joan M., 2009. "Identifying Contributions of On-road Motor Vehicles to Urban Air Pollution Using Travel Demand Model Data," Institute of Transportation Studies, Working Paper Series qt2700q8x1, Institute of Transportation Studies, UC Davis.
    6. Ogden, Joan & Yang, Christopher & Nicholas, Michael, 2007. "Technical and Economic Assessment of Regional Hydrogen Transition Strategies," Institute of Transportation Studies, Working Paper Series qt46f8215p, Institute of Transportation Studies, UC Davis.
    7. Kovacevic, Vujadin & Wesseler, Justus, 2010. "Cost-effectiveness analysis of algae energy production in the EU," Energy Policy, Elsevier, vol. 38(10), pages 5749-5757, October.
    8. Konstantinos Metaxoglou & Aaron Smith, 2020. "Productivity Spillovers From Pollution Reduction: Reducing Coal Use Increases Crop Yields," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 259-280, January.
    9. Ictsd, 2008. "Biofuel Production, Trade and Sustainable Development," Price Volatility and Beyond 320193, International Centre for Trade and Sustainable Development (ICTSD).
    10. Carol McAusland & Nouri Najjar, 2015. "Carbon Footprint Taxes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(1), pages 37-70, May.
    11. Christopher R. Knittel, 2012. "Reducing Petroleum Consumption from Transportation," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 93-118, Winter.
    12. Morten Simonsen & Hans Jakob Walnum, 2011. "Energy Chain Analysis of Passenger Car Transport," Energies, MDPI, vol. 4(2), pages 1-28, February.
    13. Whitehead, Jake & Franklin, Joel P. & Washington, Simon, 2015. "Transitioning to energy efficient vehicles: An analysis of the potential rebound effects and subsequent impact upon emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 250-267.
    14. Hirte, Georg & Tscharaktschiew, Stefan, 2013. "The optimal subsidy on electric vehicles in German metropolitan areas: A spatial general equilibrium analysis," Energy Economics, Elsevier, vol. 40(C), pages 515-528.
    15. Stephen M. Wheeler, 2017. "A Carbon-Neutral California: Social Ecology and Prospects for 2050 GHG Reduction," Urban Planning, Cogitatio Press, vol. 2(4), pages 5-18.
    16. Hira, Anil, 2011. "Sugar rush: Prospects for a global ethanol market," Energy Policy, Elsevier, vol. 39(11), pages 6925-6935.
    17. Ercolino, Giuliana & Ashraf, Muhammad A. & Specchia, Vito & Specchia, Stefania, 2015. "Performance evaluation and comparison of fuel processors integrated with PEM fuel cell based on steam or autothermal reforming and on CO preferential oxidation or selective methanation," Applied Energy, Elsevier, vol. 143(C), pages 138-153.
    18. Morales, Marjorie & Quintero, Julián & Conejeros, Raúl & Aroca, Germán, 2015. "Life cycle assessment of lignocellulosic bioethanol: Environmental impacts and energy balance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1349-1361.
    19. Batista, T. & Freire, F. & Silva, C.M., 2015. "Vehicle environmental rating methodologies: Overview and application to light-duty vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 192-206.
    20. Lipman, Timothy & Kammen, Daniel & Ogden, Joan & Sperling, Dan, 2004. "An Integrated Hydrogen Vision for California," Institute of Transportation Studies, Working Paper Series qt931583w4, Institute of Transportation Studies, UC Davis.

    More about this item

    Keywords

    UCD-ITS-RP-08-38; Engineering;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt9215h1m8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.