IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v124y2019icp63-80.html
   My bibliography  Save this article

Considering future regional air quality impacts of the transportation sector

Author

Listed:
  • Kinnon, Michael Mac
  • Zhu, Shupeng
  • Carreras-Sospedra, Marc
  • Soukup, James V.
  • Dabdub, Donald
  • Samuelsen, G.S.
  • Brouwer, Jacob

Abstract

Regional air pollution is strongly impacted by transportation emissions. Policy mechanisms to reduce emissions are required to reach environmental quality goals. Projecting the drivers (e.g., technical, economic, societal, regulatory) that will impact future emissions is challenging, and assessing regional air quality (AQ) is complicated by the need for detailed modeling tools and data inputs to simulate chemistry and transport of pollutants. This work assesses the contribution of emissions from transportation sources to ground-level concentrations of ozone and fine particulate matter via two methods. First, impacts are quantified for three U.S. regions including California using output from an economic optimization model to grow a base year emissions inventory to 2055. Second, impacts are considered for California using state-level projections with an updated emissions inventory and modeling suite in 2035. For both, advanced AQ models are used, showing that the impacts of light duty vehicles are moderate, reflecting shifts to more efficient and lower emitting technologies. In contrast, heavy duty vehicles, ships, and off-road equipment are associated with important ozone and PM2.5 burdens. Emissions from petroleum fuel production and distribution activities also have notable impacts on ozone and PM2.5. These transportation sub-sectors should be the focus of future emissions reduction policies.

Suggested Citation

  • Kinnon, Michael Mac & Zhu, Shupeng & Carreras-Sospedra, Marc & Soukup, James V. & Dabdub, Donald & Samuelsen, G.S. & Brouwer, Jacob, 2019. "Considering future regional air quality impacts of the transportation sector," Energy Policy, Elsevier, vol. 124(C), pages 63-80.
  • Handle: RePEc:eee:enepol:v:124:y:2019:i:c:p:63-80
    DOI: 10.1016/j.enpol.2018.09.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518306165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.09.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. repec:cdl:itsdav:qt9pd8m8gs is not listed on IDEAS
    2. Millstein, Dev E. & Harley, Robert A, 2010. "Effects of Retrofitting Emission Control Systems on In-Use Heavy Diesel Vehicles," University of California Transportation Center, Working Papers qt6k02k1fw, University of California Transportation Center.
    3. Susan C. Anenberg & Anna Belova & Jørgen Brandt & Neal Fann & Sue Greco & Sarath Guttikunda & Marie‐Eve Heroux & Fintan Hurley & Michal Krzyzanowski & Sylvia Medina & Brian Miller & Kiran Pandey & Joa, 2016. "Survey of Ambient Air Pollution Health Risk Assessment Tools," Risk Analysis, John Wiley & Sons, vol. 36(9), pages 1718-1736, September.
    4. Nsanzineza, Rene & O’Connell, Matthew & Brinkman, Gregory & Milford, Jana B., 2017. "Emissions implications of downscaled electricity generation scenarios for the western United States," Energy Policy, Elsevier, vol. 109(C), pages 601-608.
    5. Greg Cooney & Troy R. Hawkins & Joe Marriott, 2013. "Life Cycle Assessment of Diesel and Electric Public Transportation Buses," Journal of Industrial Ecology, Yale University, vol. 17(5), pages 689-699, October.
    6. Mahmud, Khizir & Town, Graham E., 2016. "A review of computer tools for modeling electric vehicle energy requirements and their impact on power distribution networks," Applied Energy, Elsevier, vol. 172(C), pages 337-359.
    7. repec:cdl:itsdav:qt2wh1k903 is not listed on IDEAS
    8. Collantes, Gustavo & Sperling, Daniel, 2008. "The origin of California's zero emission vehicle mandate," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1302-1313, December.
    9. repec:cdl:itsdav:qt9215h1m8 is not listed on IDEAS
    10. repec:cdl:itsdav:qt4fs2b9bv is not listed on IDEAS
    11. Robert A. Simons & Youngme Seo & Paul Rosenfeld, 2015. "Modeling The Effects Of Refinery Emissions On Residential Property Values," Journal of Real Estate Research, American Real Estate Society, vol. 37(3), pages 321-342.
    12. Victor, Nadejda & Nichols, Christopher & Zelek, Charles, 2018. "The U.S. power sector decarbonization: Investigating technology options with MARKAL nine-region model," Energy Economics, Elsevier, vol. 73(C), pages 410-425.
    13. Xie, Fei & Lin, Zhenhong, 2017. "Market-driven automotive industry compliance with fuel economy and greenhouse gas standards: Analysis based on consumer choice," Energy Policy, Elsevier, vol. 108(C), pages 299-311.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    2. Olena Stryhunivska & Bożena Zwolińska & Robert Giel, 2024. "The Management of Harmful Emissions from Heavy-Duty Transport Towards Sustainable Development," Sustainability, MDPI, vol. 16(24), pages 1-22, December.
    3. Enkhjargal Enkhbat & Yong Geng & Xi Zhang & Huijuan Jiang & Jingyu Liu & Dong Wu, 2020. "Driving Forces of Air Pollution in Ulaanbaatar City Between 2005 and 2015: An Index Decomposition Analysis," Sustainability, MDPI, vol. 12(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    3. Xiao, Qing & Zhou, Shaowu, 2018. "Probabilistic power flow computation considering correlated wind speeds," Applied Energy, Elsevier, vol. 231(C), pages 677-685.
    4. Onat, Nuri Cihat & Kucukvar, Murat & Tatari, Omer, 2015. "Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States," Applied Energy, Elsevier, vol. 150(C), pages 36-49.
    5. Li, Xiaotao & Yuan, Xiaodong, 2022. "Tracing the technology transfer of battery electric vehicles in China: A patent citation organization network analysis," Energy, Elsevier, vol. 239(PD).
    6. Sipiwe Chihana & Jameson Mbale & Nchimunya Chaamwe, 2024. "Unveiling the Nexus: Sulphur Dioxide Exposure, Proximity to Mining, and Respiratory Illnesses in Kankoyo: A Mixed-Methods Investigation," IJERPH, MDPI, vol. 21(7), pages 1-29, June.
    7. Huang, Ying & Liao, Cuiping & Zhang, Jingjing & Guo, Hongxu & Zhou, Nan & Zhao, Daiqing, 2019. "Exploring potential pathways towards urban greenhouse gas peaks: A case study of Guangzhou, China," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Energy Policy, Elsevier, vol. 125(C), pages 503-520.
    9. Jie Chen & Haiyong Zhang & Qian Zhou, 2021. "Rule by Law, Law-Based Governance, and Housing Prices: The Case of China," Land, MDPI, vol. 10(6), pages 1-22, June.
    10. Dong, Cong & Huang, Gordon & Cheng, Guanhui & Cai, Yanpeng & Chen, Cong & Zhu, Jinxin, 2025. "Assessing energy economic and environmental impacts of GHG emission reduction targets across Canadian provinces: A national net-zeroization-oriented energy model," Applied Energy, Elsevier, vol. 381(C).
    11. Ou, Shiqi & Hao, Xu & Lin, Zhenhong & Wang, Hewu & Bouchard, Jessey & He, Xin & Przesmitzki, Steven & Wu, Zhixin & Zheng, Jihu & Lv, Renzhi & Qi, Liang & LaClair, Tim J., 2019. "Light-duty plug-in electric vehicles in China: An overview on the market and its comparisons to the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 747-761.
    12. van Ouwerkerk, Jonas & Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Torralba-Díaz, Laura & Bußar, Christian, 2022. "Impacts of power sector model features on optimal capacity expansion: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    13. Fan, Hang & Li, Zhi & Duan, Yunjie & Wang, Boyu, 2025. "Incentive policy formulation for China's electric vehicle market: Navigating pathways to sustainable mobility with a green premium analytical model," Energy Policy, Elsevier, vol. 202(C).
    14. Kantapich Preedakorn & David Butler & Jörn Mehnen, 2023. "Challenges for the Adoption of Electric Vehicles in Thailand: Potential Impacts, Barriers, and Public Policy Recommendations," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    15. Li, Xiangyi & Castellanos, Sebastian & Maassen, Anne, 2018. "Emerging trends and innovations for electric bus adoption—a comparative case study of contracting and financing of 22 cities in the Americas, Asia-Pacific, and Europe," Research in Transportation Economics, Elsevier, vol. 69(C), pages 470-481.
    16. Clara Ma & Cristina Peñasco & Laura Díaz Anadón, 2025. "Technology innovation and environmental outcomes of road transportation policy instruments," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    17. Eckard Helmers & Johannes Dietz & Martin Weiss, 2020. "Sensitivity Analysis in the Life-Cycle Assessment of Electric vs. Combustion Engine Cars under Approximate Real-World Conditions," Sustainability, MDPI, vol. 12(3), pages 1-31, February.
    18. Xu, Yanzhi & Gbologah, Franklin E. & Lee, Dong-Yeon & Liu, Haobing & Rodgers, Michael O. & Guensler, Randall L., 2015. "Assessment of alternative fuel and powertrain transit bus options using real-world operations data: Life-cycle fuel and emissions modeling," Applied Energy, Elsevier, vol. 154(C), pages 143-159.
    19. Tavoos Hassan Bhat & Guo Jiawen & Hooman Farzaneh, 2021. "Air Pollution Health Risk Assessment (AP-HRA), Principles and Applications," IJERPH, MDPI, vol. 18(4), pages 1-22, February.
    20. Gu, Gaoxiang & Wang, Zheng, 2018. "China’s carbon emissions abatement under industrial restructuring by investment restriction," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 133-144.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:124:y:2019:i:c:p:63-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.