IDEAS home Printed from
   My bibliography  Save this paper

Objective and Subjective Rationality in a Multiple Prior Model


  • Itzhak Gilboa
  • Fabio Maccheroni
  • Massimo Marinacci
  • David Schmeidler


A decision maker is characterized by two binary relations. The first reflects decisions that are rational in an “objective” sense: the decision maker can convince others that she is right in making them. The second relation models decisions that are rational in a “subjective” sense: the decision maker cannot be convinced that she is wrong in making them. We impose axioms on these relations that allow a joint representation by a single set of prior probabilities. It is “objectively rational” to choose f in the presence of g if and only if the expected utility of f is at least as high as that of g given each and every prior in the set. It is “subjectively rational” to choose f rather than g if and only if the minimal expected utility of f (relative to all priors in the set) is at least as high as that of g.

Suggested Citation

  • Itzhak Gilboa & Fabio Maccheroni & Massimo Marinacci & David Schmeidler, 2008. "Objective and Subjective Rationality in a Multiple Prior Model," Carlo Alberto Notebooks 73, Collegio Carlo Alberto, revised 2008.
  • Handle: RePEc:cca:wpaper:73

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Mandler, Michael, 2005. "Incomplete preferences and rational intransitivity of choice," Games and Economic Behavior, Elsevier, vol. 50(2), pages 255-277, February.
    2. Dubra, Juan & Maccheroni, Fabio & Ok, Efe A., 2004. "Expected utility theory without the completeness axiom," Journal of Economic Theory, Elsevier, vol. 115(1), pages 118-133, March.
    3. Efe A. Ok & Pietro Ortoleva & Gil Riella, 2012. "Incomplete Preferences Under Uncertainty: Indecisiveness in Beliefs versus Tastes," Econometrica, Econometric Society, vol. 80(4), pages 1791-1808, July.
    4. Danan, Eric, 2008. "Revealed preference and indifferent selection," Mathematical Social Sciences, Elsevier, vol. 55(1), pages 24-37, January.
    5. Peleg, Bezalel, 1970. "Utility Functions for Partially Ordered Topological Spaces," Econometrica, Econometric Society, vol. 38(1), pages 93-96, January.
    6. Baucells, Manel & Shapley, Lloyd S., 2008. "Multiperson utility," Games and Economic Behavior, Elsevier, vol. 62(2), pages 329-347, March.
    7. Gajdos, T. & Hayashi, T. & Tallon, J.-M. & Vergnaud, J.-C., 2008. "Attitude toward imprecise information," Journal of Economic Theory, Elsevier, vol. 140(1), pages 27-65, May.
    8. Evren, Özgür & Ok, Efe A., 2011. "On the multi-utility representation of preference relations," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 554-563.
    9. Eric Danan & Anthony Ziegelmeyer, 2006. "Are preferences complete? An experimental measurement of indecisiveness under risk," Papers on Strategic Interaction 2006-01, Max Planck Institute of Economics, Strategic Interaction Group.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Rationality; Multiple Priors.;

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cca:wpaper:73. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Giovanni Bert). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.