IDEAS home Printed from
   My bibliography  Save this article

Necessary and possible preference structures


  • Giarlotta, Alfio
  • Greco, Salvatore


A classical approach to model a preference on a set A of alternatives uses a reflexive, transitive and complete binary relation, i.e. a total preorder. Since the axioms of a total preorder do not usually hold in many applications, preferences are often modeled by means of weaker binary relations, dropping either completeness (e.g. partial preorders) or transitivity (e.g. interval orders and semiorders). We introduce an alternative approach to preference modeling, which uses two binary relations–the necessary preference ≿N and the possible preference ≿P–to fulfill completeness and transitivity in a mixed form. Formally, a NaP-preference (necessary and possible preference) on A is a pair (≿N,≿P) such that ≿N is a partial preorder on A and ≿P is an extension of ≿N satisfying mixed properties of transitivity and completeness. We characterize a NaP-preference (≿N,≿P) by the existence of a nonempty set R of total preorders such that ⋂R=≿N and ⋃R=≿P. In order to analyze the representability of NaP-preferences via families of utility functions, we generalize the notion of a multi-utility representation of a partial preorder by that of a modal utility representation of a pair of binary relations. Further, we give a dynamic view of the family of all NaP-preferences on a fixed set A by endowing it with a relation of partial order, which is defined according to the stability of the information represented by each NaP-preference.

Suggested Citation

  • Giarlotta, Alfio & Greco, Salvatore, 2013. "Necessary and possible preference structures," Journal of Mathematical Economics, Elsevier, vol. 49(2), pages 163-172.
  • Handle: RePEc:eee:mateco:v:49:y:2013:i:2:p:163-172 DOI: 10.1016/j.jmateco.2013.01.001

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Greco, Salvatore & Mousseau, Vincent & Slowinski, Roman, 2010. "Multiple criteria sorting with a set of additive value functions," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1455-1470, December.
    2. Itzhak Gilboa & Fabio Maccheroni & Massimo Marinacci & David Schmeidler, 2010. "Objective and Subjective Rationality in a Multiple Prior Model," Econometrica, Econometric Society, pages 755-770.
    3. Mandler, Michael, 2005. "Incomplete preferences and rational intransitivity of choice," Games and Economic Behavior, Elsevier, vol. 50(2), pages 255-277, February.
    4. Ok, Efe A., 2002. "Utility Representation of an Incomplete Preference Relation," Journal of Economic Theory, Elsevier, vol. 104(2), pages 429-449, June.
    5. Mukul Majumdar & Amartya Sen, 1976. "A Note on Representing Partial Orderings," Review of Economic Studies, Oxford University Press, vol. 43(3), pages 543-545.
    6. Dubra, Juan & Maccheroni, Fabio & Ok, Efe A., 2004. "Expected utility theory without the completeness axiom," Journal of Economic Theory, Elsevier, pages 118-133.
    7. Efe A. Ok & Pietro Ortoleva & Gil Riella, 2012. "Incomplete Preferences Under Uncertainty: Indecisiveness in Beliefs versus Tastes," Econometrica, Econometric Society, vol. 80(4), pages 1791-1808, July.
    8. Back, Kerry, 1986. "Concepts of similarity for utility functions," Journal of Mathematical Economics, Elsevier, vol. 15(2), pages 129-142, April.
    9. Peleg, Bezalel, 1970. "Utility Functions for Partially Ordered Topological Spaces," Econometrica, Econometric Society, vol. 38(1), pages 93-96, January.
    10. Ehud Lehrer & Roee Teper, 2014. "Extension Rules or What Would the Sage Do?," American Economic Journal: Microeconomics, American Economic Association, vol. 6(1), pages 5-22, February.
    11. Paolo Ghirardato & Fabio Maccheroni & Massimo Marinacci & Marciano Siniscalchi, 2003. "A Subjective Spin on Roulette Wheels," Econometrica, Econometric Society, pages 1897-1908.
    12. Herden, Gerhard & Levin, Vladimir L., 2012. "Utility representation theorems for Debreu separable preorders," Journal of Mathematical Economics, Elsevier, vol. 48(3), pages 148-154.
    13. Angilella, Silvia & Greco, Salvatore & Matarazzo, Benedetto, 2010. "Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral," European Journal of Operational Research, Elsevier, vol. 201(1), pages 277-288, February.
    14. Rubinstein, Ariel, 1988. "Similarity and decision-making under risk (is there a utility theory resolution to the Allais paradox?)," Journal of Economic Theory, Elsevier, vol. 46(1), pages 145-153, October.
    15. Ghirardato, Paolo & Maccheroni, Fabio & Marinacci, Massimo, 2004. "Differentiating ambiguity and ambiguity attitude," Journal of Economic Theory, Elsevier, vol. 118(2), pages 133-173, October.
    16. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    17. Lehrer, Ehud & Teper, Roee, 2011. "Justifiable preferences," Journal of Economic Theory, Elsevier, vol. 146(2), pages 762-774, March.
    18. Eliaz, Kfir & Ok, Efe A., 2006. "Indifference or indecisiveness? Choice-theoretic foundations of incomplete preferences," Games and Economic Behavior, Elsevier, vol. 56(1), pages 61-86, July.
    19. Michael Mandler, 2006. "Cardinality versus Ordinality: A Suggested Compromise," American Economic Review, American Economic Association, vol. 96(4), pages 1114-1136, September.
    20. Evren, Özgür & Ok, Efe A., 2011. "On the multi-utility representation of preference relations," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 554-563.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    2. Salvatore Corrente & Salvatore Greco & Benedetto Matarazzo & Roman Słowiński, 2016. "Robust ordinal regression for decision under risk and uncertainty," Journal of Business Economics, Springer, vol. 86(1), pages 55-83, January.
    3. Corrente, Salvatore & Greco, Salvatore & Ishizaka, Alessio, 2016. "Combining analytical hierarchy process and Choquet integral within non-additive robust ordinal regression," Omega, Elsevier, vol. 61(C), pages 2-18.
    4. Greco, Salvatore & Mousseau, Vincent & Słowiński, Roman, 2014. "Robust ordinal regression for value functions handling interacting criteria," European Journal of Operational Research, Elsevier, vol. 239(3), pages 711-730.
    5. repec:spr:fuzodm:v:16:y:2017:i:2:d:10.1007_s10700-016-9244-x is not listed on IDEAS
    6. S. Cerreia-Vioglio & A. Giarlotta & S. Greco & F. Maccheroni & M. Marinacci, 2016. "Rational Preference and Rationalizable Choice," Working Papers 589, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    7. Faro, José Heleno & Lefort, Jean Philippe, 2013. "Dynamic Objective and Subjective Rationality," Insper Working Papers wpe_312, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:49:y:2013:i:2:p:163-172. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.