IDEAS home Printed from https://ideas.repec.org/p/bog/wpaper/297.html
   My bibliography  Save this paper

Forecasting actuarial time series: a practical study of the effect of statistical pre-adjustments

Author

Listed:
  • Alexandros E. Milionis

    (Bank of Greece and University of the Aegean)

  • Nikolaos G. Galanopoulos

    (University of the Aegean)

  • Peter Hatzopoulos

    (University of the Aegean)

  • Aliki Sagianou

    (University of the Aegean)

Abstract

One of the most important risks in the actuarial industry is the longevity risk. The accurate prediction of mortality rates plays a crucial role in the management of the aforementioned risk. Such predictions are performed by modelling the mortality rates using mortality models. Aiming at possible improvements in such forecasts, in this work we examine the effect of data transformation and “linearization†on the quality of time series forecasts of mortality rate data. By the term time series “linearization†is meant the treatment of causes that disrupt the underlying stochastic process measured by a time series. The dataset consists of the time series of the period indices uncovering the mortality trend for England-Wales according to published mortality models. Results indicate a clear improvement in interval forecasts. However, the result on point forecasts is not as clear as is the case of interval forecasts. The documented improvement in interval forecasts can significantly affect the Solvency Capital Requirement, and subsequently the Solvency Ratio for a pension fund. Such an improvement might put some pension providers at a competitive advantage as they have less capital locked in their liabilities. In addition, it was confirmed that the transformed-linearized time series of mortality rates satisfy to a higher extent the need for normality as compared to the original series.

Suggested Citation

  • Alexandros E. Milionis & Nikolaos G. Galanopoulos & Peter Hatzopoulos & Aliki Sagianou, 2022. "Forecasting actuarial time series: a practical study of the effect of statistical pre-adjustments," Working Papers 297, Bank of Greece.
  • Handle: RePEc:bog:wpaper:297
    DOI: 10.52903/wp2022297
    as

    Download full text from publisher

    File URL: https://doi.org/10.52903/wp2022297
    File Function: Full Text
    Download Restriction: no

    File URL: https://libkey.io/10.52903/wp2022297?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Haberman, Steven & Renshaw, Arthur, 2011. "A comparative study of parametric mortality projection models," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 35-55, January.
    2. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2011. "Mortality density forecasts: An analysis of six stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 355-367, May.
    3. Angus S. Deaton & Christina Paxson, 2004. "Mortality, Income, and Income Inequality over Time in Britain and the United States," NBER Chapters, in: Perspectives on the Economics of Aging, pages 247-286, National Bureau of Economic Research, Inc.
    4. Hatzopoulos, P. & Haberman, S., 2011. "A dynamic parameterization modeling for the age-period-cohort mortality," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 155-174, September.
    5. Peter Hatzopoulos & Aliki Sagianou, 2020. "Introducing and Evaluating a New Multiple-Component Stochastic Mortality Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 24(3), pages 393-445, July.
    6. Alexandros Milionis, 2004. "The importance of variance stationarity in economic time series modelling. A practical approach," Applied Financial Economics, Taylor & Francis Journals, vol. 14(4), pages 265-278.
    7. Nelson, Harold Jr. & Granger, C. W. J., 1979. "Experience with using the Box-Cox transformation when forecasting economic time series," Journal of Econometrics, Elsevier, vol. 10(1), pages 57-69, April.
    8. Gao, Quansheng & Hu, Chengjun, 2009. "Dynamic mortality factor model with conditional heteroskedasticity," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 410-423, December.
    9. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    10. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    11. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    12. Richards, S. J. & Currie, I. D., 2009. "Longevity Risk and Annuity Pricing with the Lee-Carter Model," British Actuarial Journal, Cambridge University Press, vol. 15(2), pages 317-343, July.
    13. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two‐Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718, December.
    14. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    15. Alexandros E. Milionis & Nikolaos G. Galanopoulos, 2020. "A study of the effect of data transformation and «linearization» on time series forecasts. A practical approach," Working Papers 280, Bank of Greece.
    16. Pitacco, Ermanno & Denuit, Michel & Haberman, Steven & Olivieri, Annamaria, 2009. "Modelling Longevity Dynamics for Pensions and Annuity Business," OUP Catalogue, Oxford University Press, number 9780199547272.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    2. Jaap Spreeuw & Iqbal Owadally & Muhammad Kashif, 2022. "Projecting Mortality Rates Using a Markov Chain," Mathematics, MDPI, vol. 10(7), pages 1-18, April.
    3. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    4. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    5. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    6. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    7. Apostolos Bozikas & Georgios Pitselis, 2018. "An Empirical Study on Stochastic Mortality Modelling under the Age-Period-Cohort Framework: The Case of Greece with Applications to Insurance Pricing," Risks, MDPI, vol. 6(2), pages 1-34, April.
    8. Karim Barigou & Stéphane Loisel & Yahia Salhi, 2020. "Parsimonious Predictive Mortality Modeling by Regularization and Cross-Validation with and without Covid-Type Effect," Risks, MDPI, vol. 9(1), pages 1-18, December.
    9. Hatzopoulos, P. & Haberman, S., 2011. "A dynamic parameterization modeling for the age-period-cohort mortality," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 155-174, September.
    10. Dowd, Kevin & Cairns, Andrew J.G. & Blake, David & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2010. "Evaluating the goodness of fit of stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 255-265, December.
    11. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    12. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    13. Ana Debón & Steven Haberman & Francisco Montes & Edoardo Otranto, 2021. "Do Different Models Induce Changes in Mortality Indicators? That Is a Key Question for Extending the Lee-Carter Model," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    14. Christiansen, Marcus C. & Niemeyer, Andreas & Teigiszerová, Lucia, 2015. "Modeling and forecasting duration-dependent mortality rates," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 65-81.
    15. David Blake & Andrew Cairns & Guy Coughlan & Kevin Dowd & Richard MacMinn, 2013. "The New Life Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 501-558, September.
    16. Colin O’hare & Youwei Li, 2017. "Modelling mortality: are we heading in the right direction?," Applied Economics, Taylor & Francis Journals, vol. 49(2), pages 170-187, January.
    17. James Risk & Michael Ludkovski, 2015. "Statistical Emulators for Pricing and Hedging Longevity Risk Products," Papers 1508.00310, arXiv.org, revised Sep 2015.
    18. Anja De Waegenaere & Bertrand Melenberg & Ralph Stevens, 2010. "Longevity Risk," De Economist, Springer, vol. 158(2), pages 151-192, June.
    19. Lenny Stoeldraijer & Coen van Duin & Leo van Wissen & Fanny Janssen, 2013. "Impact of different mortality forecasting methods and explicit assumptions on projected future life expectancy: The case of the Netherlands," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(13), pages 323-354.
    20. Norkhairunnisa Redzwan & Rozita Ramli, 2022. "A Bibliometric Analysis of Research on Stochastic Mortality Modelling and Forecasting," Risks, MDPI, vol. 10(10), pages 1-17, October.

    More about this item

    Keywords

    Time series transformation and 'linearization'; Outliers; Actuarial time series forecasts; Mortality rates; Covid-19;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bog:wpaper:297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anastasios Rizos (email available below). General contact details of provider: https://edirc.repec.org/data/boggvgr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.