IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Dynamic mortality factor model with conditional heteroskedasticity

  • Gao, Quansheng
  • Hu, Chengjun
Registered author(s):

    In most methods for modeling mortality rates, the idiosyncratic shocks are assumed to be homoskedastic. This study investigates the conditional heteroskedasticity of mortality in terms of statistical time series. We start from testing the conditional heteroskedasticity of the period effect in the naïve Lee-Carter model for some mortality data. Then we introduce the Generalized Dynamic Factor method and the multivariate BEKK GARCH model to describe mortality dynamics and the conditional heteroskedasticity of mortality. After specifying the number of static factors and dynamic factors by several variants of information criterion, we compare our model with other two models, namely, the Lee-Carter model and the state space model. Based on several error-based measures of performance, our results indicate that if the number of static factors and dynamic factors is properly determined, the method proposed dominates other methods. Finally, we use our method combined with Kalman filter to forecast the mortality rates of Iceland and period life expectancies of Denmark, Finland, Italy and Netherlands.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6V8N-4X66S18-1/2/f277e50775c2f7f8b22c736fc87c70b6
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Insurance: Mathematics and Economics.

    Volume (Year): 45 (2009)
    Issue (Month): 3 (December)
    Pages: 410-423

    as
    in new window

    Handle: RePEc:eee:insuma:v:45:y:2009:i:3:p:410-423
    Contact details of provider: Web page: http://www.elsevier.com/locate/inca/505554

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
    2. Renshaw, A. E. & Haberman, S., 2003. "On the forecasting of mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 379-401, July.
    3. Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2006. "Dynamic Factor GARCH: Multivariate Volatility Forecast for a Large Number of Series," LEM Papers Series 2006/25, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    4. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    5. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    6. Taufiq Choudhry & Hao Wu, 2008. "Forecasting ability of GARCH vs Kalman filter method: evidence from daily UK time-varying beta," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(8), pages 670-689.
    7. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
    8. Bauer Daniel & Börger Matthias & Ruß Jochen & Zwiesler Hans-Joachim, 2008. "The Volatility of Mortality," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 3(1), pages 1-29, September.
    9. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    10. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
    11. James G. MacKinnon, 1995. "Numerical Distribution Functions for Unit Root and Cointegration Tests," Working Papers 918, Queen's University, Department of Economics.
    12. Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2008. "A robust criterion for determining the number of static factors in approximate factor models," Working Paper Series 0903, European Central Bank.
    13. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-50, July.
    14. Schrager, David F., 2006. "Affine stochastic mortality," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 81-97, February.
    15. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-72, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:45:y:2009:i:3:p:410-423. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.