IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v45y2009i3p410-423.html
   My bibliography  Save this article

Dynamic mortality factor model with conditional heteroskedasticity

Author

Listed:
  • Gao, Quansheng
  • Hu, Chengjun

Abstract

In most methods for modeling mortality rates, the idiosyncratic shocks are assumed to be homoskedastic. This study investigates the conditional heteroskedasticity of mortality in terms of statistical time series. We start from testing the conditional heteroskedasticity of the period effect in the naïve Lee-Carter model for some mortality data. Then we introduce the Generalized Dynamic Factor method and the multivariate BEKK GARCH model to describe mortality dynamics and the conditional heteroskedasticity of mortality. After specifying the number of static factors and dynamic factors by several variants of information criterion, we compare our model with other two models, namely, the Lee-Carter model and the state space model. Based on several error-based measures of performance, our results indicate that if the number of static factors and dynamic factors is properly determined, the method proposed dominates other methods. Finally, we use our method combined with Kalman filter to forecast the mortality rates of Iceland and period life expectancies of Denmark, Finland, Italy and Netherlands.

Suggested Citation

  • Gao, Quansheng & Hu, Chengjun, 2009. "Dynamic mortality factor model with conditional heteroskedasticity," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 410-423, December.
  • Handle: RePEc:eee:insuma:v:45:y:2009:i:3:p:410-423
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(09)00102-4
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    2. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
    3. Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2007. "A Robust Criterion for Determining the Number of Static Factors in Approximate Factor Models," LEM Papers Series 2007/19, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    4. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    5. Renshaw, A. E. & Haberman, S., 2003. "On the forecasting of mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 379-401, July.
    6. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    7. Taufiq Choudhry & Hao Wu, 2008. "Forecasting ability of GARCH vs Kalman filter method: evidence from daily UK time-varying beta," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(8), pages 670-689.
    8. Schrager, David F., 2006. "Affine stochastic mortality," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 81-97, February.
    9. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    10. MacKinnon, James G, 1996. "Numerical Distribution Functions for Unit Root and Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 601-618, Nov.-Dec..
    11. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    12. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
    13. Bauer Daniel & Börger Matthias & Ruß Jochen & Zwiesler Hans-Joachim, 2008. "The Volatility of Mortality," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 3(1), pages 1-29, September.
    14. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    15. Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2006. "Dynamic Factor GARCH: Multivariate Volatility Forecast for a Large Number of Series," LEM Papers Series 2006/25, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Hua & MacMinn, Richard & Sun, Tao, 2015. "Multi-population mortality models: A factor copula approach," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 135-146.
    2. repec:bla:jrinsu:v:84:y:2017:i:s1:p:515-532 is not listed on IDEAS
    3. repec:bla:jrinsu:v:84:y:2017:i:s1:p:393-415 is not listed on IDEAS
    4. repec:bla:jrinsu:v:84:y:2017:i:s1:p:495-514 is not listed on IDEAS
    5. Hatzopoulos, P. & Haberman, S., 2011. "A dynamic parameterization modeling for the age-period-cohort mortality," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 155-174, September.
    6. repec:eee:insuma:v:77:y:2017:i:c:p:97-110 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:45:y:2009:i:3:p:410-423. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.