IDEAS home Printed from https://ideas.repec.org/p/boc/scon20/17.html
   My bibliography  Save this paper

Smooth varying coefficient models in Stata

Author

Listed:
  • Fernando Rios-Avila

    (Levy Economics Institute)

Abstract

Nonparametric regressions are a powerful statistical tool to model relationships between dependent and independent variables with minimal assumptions on the underlying functional forms. Despite its potential benefits, these types of models have two weaknesses: The added flexibility creates a curse of dimensionality, and procedures available for model selection, like cross-validation, have a high computationally cost in samples with even moderate sizes. An alternative to fully nonparametric models are semiparametric models that combine the flexibility of nonparametric regressions with the structure of standard models. This presentation describes the estimation of a particular type of semiparametric modes known as smooth varying-coefficient models (Hastie and Tibshirani 1993), based on kernel regression methods, using a new set of commands in vc_pack. These commands aim to facilitate bandwidth selection and model estimation and create visualizations of the results.

Suggested Citation

  • Fernando Rios-Avila, 2020. "Smooth varying coefficient models in Stata," 2020 Stata Conference 17, Stata Users Group.
  • Handle: RePEc:boc:scon20:17
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/repec/scon2020/us20_Rios-Avila2.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cai, Zongwu & Fan, Jianqing & Yao, Qiwei, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
    2. Henderson,Daniel J. & Parmeter,Christopher F., 2015. "Applied Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521279680, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bao, Te & Ma, Mengzhong & Wen, Yonggang, 2023. "Herding in the non-fungible token (NFT) market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    2. Valérie Mignon & Blaise Gnimassoun & Carl Grekou, 2024. "The industrial cost of fixed exchange rate regimes," Working Papers hal-04582964, HAL.
    3. African Department International Monetary Fund & Western Africa Region World Bank, 2024. "Enhancing Sustainable and Inclusive Growth in the Central African Economic and Monetary Community," World Bank Publications - Reports 38438, The World Bank Group.
    4. Gioia M. Mariani & Eleonora Porreca & Concetta Rondinelli, 2025. "How do households adjust house price expectations in an era of high inflation? Experimental evidence," Questioni di Economia e Finanza (Occasional Papers) 940, Bank of Italy, Economic Research and International Relations Area.
    5. Salisu, Afees A. & Isah, Kazeem & Vinh Vo, Xuan, 2025. "The “effect modifier” of US interest rate in the economic policy uncertainties and economic conditions of fifty (50) US states: A semi-parametric smooth varying-coefficient approach," The North American Journal of Economics and Finance, Elsevier, vol. 75(PA).
    6. Andersson, Fredrik N.G., 2023. "Income inequality and carbon emissions in the United States 1929–2019," Ecological Economics, Elsevier, vol. 204(PA).
    7. Assaf Botzer, 2025. "Publication Trends on the Varying Coefficients Model: Estimating the Actual (Under)Utilization of a Highly Acclaimed Method for Studying Statistical Interactions," Publications, MDPI, vol. 13(2), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salisu, Afees A. & Isah, Kazeem & Vinh Vo, Xuan, 2025. "The “effect modifier” of US interest rate in the economic policy uncertainties and economic conditions of fifty (50) US states: A semi-parametric smooth varying-coefficient approach," The North American Journal of Economics and Finance, Elsevier, vol. 75(PA).
    2. David H. Bernstein & Christopher F. Parmeter, 2017. "Returns to Scale in Electricity Generation: Revisited and Replicated," Working Papers 2017-08, University of Miami, Department of Economics.
    3. Herwartz, H. & Xu, F., 2010. "A functional coefficient model view of the Feldstein-Horioka puzzle," Journal of International Money and Finance, Elsevier, vol. 29(1), pages 37-54, February.
    4. Almeida, Alexandre N. & Bravo-Ureta, Boris E., 2019. "Agricultural productivity, shadow wages and off-farm labor decisions in Nicaragua," Economic Systems, Elsevier, vol. 43(1), pages 99-110.
    5. Battisti, Michele & Gatto, Massimo Del & Parmeter, Christopher F., 2022. "Skill-biased technical change and labor market inefficiency," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    6. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    7. Wong, Heung & Ip, Wai-cheung & Zhang, Riquan, 2008. "Varying-coefficient single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1458-1476, January.
    8. Huang, Bai & Lee, Tae-Hwy & Ullah, Aman, 2020. "Combined estimation of semiparametric panel data models," Econometrics and Statistics, Elsevier, vol. 15(C), pages 30-45.
    9. Christopher F. Parmeter & Hung-Jen Wang & Subal C. Kumbhakar, 2017. "Nonparametric estimation of the determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 47(3), pages 205-221, June.
    10. Cai, Zongwu, 2003. "Nonparametric estimation equations for time series data," Statistics & Probability Letters, Elsevier, vol. 62(4), pages 379-390, May.
    11. Wang, Qihua & Zhang, Riquan, 2009. "Statistical estimation in varying coefficient models with surrogate data and validation sampling," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2389-2405, November.
    12. Hasan Engin Duran & Andrzej Cieślik, 2021. "The distribution of city sizes in Turkey: A failure of Zipf’s law due to concavity," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(5), pages 1702-1719, October.
    13. Kourtellos, Andros & Stengos, Thanasis & Sun, Yiguo, 2022. "Endogeneity In Semiparametric Threshold Regression," Econometric Theory, Cambridge University Press, vol. 38(3), pages 562-595, June.
    14. Heather L. R. Tierney, 2019. "Forecasting with the Nonparametric Exclusion-from-Core Inflation Persistence Model Using Real-Time Data," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 25(1), pages 39-63, February.
    15. Stolzenburg, Ulrich, 2014. "Growth determinants across time and space: A semiparametric panel data approach," Economics Working Papers 2014-11, Christian-Albrechts-University of Kiel, Department of Economics.
    16. Čížek, Pavel & Koo, Chao Hui, 2021. "Jump-preserving varying-coefficient models for nonlinear time series," Econometrics and Statistics, Elsevier, vol. 19(C), pages 58-96.
    17. Qiu, Jia & Li, Degao & You, Jinhong, 2015. "SCAD-penalized regression for varying-coefficient models with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 100-118.
    18. De Monte Enrico, 2024. "Nonparametric Instrumental Regression with Two-Way Fixed Effects," Journal of Econometric Methods, De Gruyter, vol. 13(1), pages 49-66, January.
    19. Das, Sonali & Racine, Jeffrey S., 2018. "Interactive nonparametric analysis of nonlinear systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 290-301.
    20. Jose Olmo, 2023. "A nonparametric predictive regression model using partitioning estimators based on Taylor expansions," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(3), pages 294-318, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:scon20:17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.