IDEAS home Printed from https://ideas.repec.org/p/bge/wpaper/750.html
   My bibliography  Save this paper

A General Theory of Rank Testing

Author

Listed:
  • Majid M. Al-Sadoon

Abstract

This paper demonstrates that all rank test statistics are functions of implicit null space estimators. The paper proposes a novel theory of null space estimation that allows for standard asymptotics, polynomial regressions, and cointegration asymptotics. The paper proves that the behaviour of rank test statistics is completely governed by the implicit null space estimators through a plug-in principle. This allows for a general theory of rank testing that simplifies the asymptotics of rank test statistics, clarifies the relationships between the various rank test statistics, makes full use of the numerical analysis literature, and motivates numerous new rank test statistics. A brief Monte Carlo study illustrates the results.

Suggested Citation

  • Majid M. Al-Sadoon, 2015. "A General Theory of Rank Testing," Working Papers 750, Barcelona School of Economics.
  • Handle: RePEc:bge:wpaper:750
    as

    Download full text from publisher

    File URL: http://www.barcelonagse.eu/sites/default/files/working_paper_pdfs/750.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cragg, John G. & Donald, Stephen G., 1997. "Inferring the rank of a matrix," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 223-250.
    2. Andrews, Donald W. K., 1987. "Asymptotic Results for Generalized Wald Tests," Econometric Theory, Cambridge University Press, vol. 3(3), pages 348-358, June.
    3. P. C. B. Phillips & S. N. Durlauf, 1986. "Multiple Time Series Regression with Integrated Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 473-495.
    4. Nyblom, Jukka & Harvey, Andrew, 2000. "Tests Of Common Stochastic Trends," Econometric Theory, Cambridge University Press, vol. 16(2), pages 176-199, April.
    5. Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2010. "Testing for co-integration in vector autoregressions with non-stationary volatility," Journal of Econometrics, Elsevier, vol. 158(1), pages 7-24, September.
    6. Kleibergen, Frank & Paap, Richard, 2006. "Generalized reduced rank tests using the singular value decomposition," Journal of Econometrics, Elsevier, vol. 133(1), pages 97-126, July.
    7. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory For Heteroskedasticity-Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 21(6), pages 1130-1164, December.
    8. Robin, Jean-Marc & Smith, Richard J., 2000. "Tests Of Rank," Econometric Theory, Cambridge University Press, vol. 16(2), pages 151-175, April.
    9. Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2010. "Cointegration Rank Testing Under Conditional Heteroskedasticity," Econometric Theory, Cambridge University Press, vol. 26(6), pages 1719-1760, December.
    10. Johansen, Søren, 1995. "A Stastistical Analysis of Cointegration for I(2) Variables," Econometric Theory, Cambridge University Press, vol. 11(1), pages 25-59, February.
    11. Al-Sadoon, Majid M., 2014. "Geometric and long run aspects of Granger causality," Journal of Econometrics, Elsevier, vol. 178(P3), pages 558-568.
    12. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464.
    13. Nicholas M. Kiefer & Timothy J. Vogelsang & Helle Bunzel, 2000. "Simple Robust Testing of Regression Hypotheses," Econometrica, Econometric Society, vol. 68(3), pages 695-714, May.
    14. Timothy J. Vogelsang, 2003. "Testing In Gmm Models Without Truncation," Advances in Econometrics, in: Maximum Likelihood Estimation of Misspecified Models: Twenty Years Later, pages 199-233, Emerald Group Publishing Limited.
    15. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2002. "Heteroskedasticity-Autocorrelation Robust Testing Using Bandwidth Equal To Sample Size," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1350-1366, December.
    16. Cragg, John G. & Donald, Stephen G., 1993. "Testing Identifiability and Specification in Instrumental Variable Models," Econometric Theory, Cambridge University Press, vol. 9(2), pages 222-240, April.
    17. Avarucci, Marco & Velasco, Carlos, 2009. "A Wald test for the cointegration rank in nonstationary fractional systems," Journal of Econometrics, Elsevier, vol. 151(2), pages 178-189, August.
    18. Donald, Stephen G. & Fortuna, Natércia & Pipiras, Vladas, 2007. "On Rank Estimation In Symmetric Matrices: The Case Of Indefinite Matrix Estimators," Econometric Theory, Cambridge University Press, vol. 23(6), pages 1217-1232, December.
    19. Alexei Onatski, 2009. "Testing Hypotheses About the Number of Factors in Large Factor Models," Econometrica, Econometric Society, vol. 77(5), pages 1447-1479, September.
    20. Gonzalo Camba‐Mendez & George Kapetanios, 2005. "Estimating the Rank of the Spectral Density Matrix," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(1), pages 37-48, January.
    21. Wright, Jonathan H., 2003. "Detecting Lack Of Identification In Gmm," Econometric Theory, Cambridge University Press, vol. 19(2), pages 322-330, April.
    22. Lewbel, Arthur, 1991. "The Rank of Demand Systems: Theory and Nonparametric Estimation," Econometrica, Econometric Society, vol. 59(3), pages 711-730, May.
    23. Frank Kleibergen, 2005. "Testing Parameters in GMM Without Assuming that They Are Identified," Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, July.
    24. Nicholas M. Kiefer & Timothy J. Vogelsang, 2002. "Heteroskedasticity-Autocorrelation Robust Standard Errors Using The Bartlett Kernel Without Truncation," Econometrica, Econometric Society, vol. 70(5), pages 2093-2095, September.
    25. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    26. Caner, Mehmet, 1998. "Tests for cointegration with infinite variance errors," Journal of Econometrics, Elsevier, vol. 86(1), pages 155-175, June.
    27. Gonzalo Camba-Mendez & George Kapetanios, 2009. "Statistical Tests and Estimators of the Rank of a Matrix and Their Applications in Econometric Modelling," Econometric Reviews, Taylor & Francis Journals, vol. 28(6), pages 581-611.
    28. Nunzio Cappuccio & Diego Lubian, 2010. "The fragility of the KPSS stationarity test," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(2), pages 237-253, June.
    29. Zaka Ratsimalahelo, 2003. "Rank Test Based On Matrix Perturbation Theory," Econometrics 0306008, University Library of Munich, Germany.
    30. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    31. Kleibergen, Frank & van Dijk, Herman K., 1994. "Direct cointegration testing in error correction models," Journal of Econometrics, Elsevier, vol. 63(1), pages 61-103, July.
    32. Lutkepohl, Helmut & Burda, Maike M., 1997. "Modified Wald tests under nonregular conditions," Journal of Econometrics, Elsevier, vol. 78(2), pages 315-332, June.
    33. Camba-Mendez, Gonzalo, et al, 2003. "Tests of Rank in Reduced Rank Regression Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 145-155, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Sadoon, Majid M., 2017. "A unifying theory of tests of rank," Journal of Econometrics, Elsevier, vol. 199(1), pages 49-62.
    2. Richard Blundell & Dennis Kristensen & Rosa Matzkin, 2017. "Individual counterfactuals with multidimensional unobserved heterogeneity," CeMMAP working papers CWP60/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Al-Sadoon, Majid M., 2019. "Testing subspace Granger causality," Econometrics and Statistics, Elsevier, vol. 9(C), pages 42-61.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Sadoon, Majid M., 2017. "A unifying theory of tests of rank," Journal of Econometrics, Elsevier, vol. 199(1), pages 49-62.
    2. Al-Sadoon, Majid M., 2019. "Testing subspace Granger causality," Econometrics and Statistics, Elsevier, vol. 9(C), pages 42-61.
    3. Kleibergen, Frank & Paap, Richard, 2006. "Generalized reduced rank tests using the singular value decomposition," Journal of Econometrics, Elsevier, vol. 133(1), pages 97-126, July.
    4. Qihui Chen & Zheng Fang, 2018. "Improved Inference on the Rank of a Matrix," Papers 1812.02337, arXiv.org, revised Mar 2019.
    5. Donald, Stephen G. & Fortuna, Natércia & Pipiras, Vladas, 2007. "On Rank Estimation In Symmetric Matrices: The Case Of Indefinite Matrix Estimators," Econometric Theory, Cambridge University Press, vol. 23(6), pages 1217-1232, December.
    6. Lee, Wei-Ming & Kuan, Chung-Ming & Hsu, Yu-Chin, 2014. "Testing over-identifying restrictions without consistent estimation of the asymptotic covariance matrix," Journal of Econometrics, Elsevier, vol. 181(2), pages 181-193.
    7. Peter C. B. Phillips & Xiaohu Wang & Yonghui Zhang, 2019. "HAR Testing for Spurious Regression in Trend," Econometrics, MDPI, vol. 7(4), pages 1-28, December.
    8. Fortuna, Natercia, 2008. "Local rank tests in a multivariate nonparametric relationship," Journal of Econometrics, Elsevier, vol. 142(1), pages 162-182, January.
    9. Guggenberger, Patrik & Smith, Richard J., 2008. "Generalized empirical likelihood tests in time series models with potential identification failure," Journal of Econometrics, Elsevier, vol. 142(1), pages 134-161, January.
    10. Inoue, Atsushi & Rossi, Barbara, 2011. "Testing for weak identification in possibly nonlinear models," Journal of Econometrics, Elsevier, vol. 161(2), pages 246-261, April.
    11. Shin‐Kun Peng & Takatoshi Tabuchi, 2007. "Spatial Competition in Variety and Number of Stores," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 16(1), pages 227-250, March.
    12. Zaka Ratsimalahelo, 2003. "Strongly Consistent Determination of the Rank of Matrix," EERI Research Paper Series EERI_RP_2003_04, Economics and Econometrics Research Institute (EERI), Brussels.
    13. Düker, Marie-Christine & Pipiras, Vladas & Sundararajan, Raanju, 2022. "Cotrending: Testing for common deterministic trends in varying means model," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    14. Kirstin Hubrich & Helmut Lutkepohl & Pentti Saikkonen, 2001. "A Review Of Systems Cointegration Tests," Econometric Reviews, Taylor & Francis Journals, vol. 20(3), pages 247-318.
    15. Matei Demetrescu & Christoph Hanck & Robinson Kruse‐Becher, 2022. "Robust inference under time‐varying volatility: A real‐time evaluation of professional forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1010-1030, August.
    16. Xu, Ke-Li, 2012. "Robustifying multivariate trend tests to nonstationary volatility," Journal of Econometrics, Elsevier, vol. 169(2), pages 147-154.
    17. Kleibergen, Frank, 2007. "Generalizing weak instrument robust IV statistics towards multiple parameters, unrestricted covariance matrices and identification statistics," Journal of Econometrics, Elsevier, vol. 139(1), pages 181-216, July.
    18. Xiaofeng Shao, 2010. "A self‐normalized approach to confidence interval construction in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 343-366, June.
    19. Lui, Yiu Lim & Phillips, Peter C.B. & Yu, Jun, 2024. "Robust testing for explosive behavior with strongly dependent errors," Journal of Econometrics, Elsevier, vol. 238(2).
    20. Donald, Stephen G. & Fortuna, Natércia & Pipiras, Vladas, 2011. "Local and Global Rank Tests for Multivariate Varying-Coefficient Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 295-306.

    More about this item

    Keywords

    rank testing; cointegration; plug-in principle; subspace estimation;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bge:wpaper:750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bruno Guallar (email available below). General contact details of provider: https://edirc.repec.org/data/bargses.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.