IDEAS home Printed from https://ideas.repec.org/p/bfi/wpaper/2020-86.html
   My bibliography  Save this paper

Quantifying the High-Frequency Trading “Arms Race†: A Simple New Methodology and Estimates

Author

Listed:
  • Matteo Aquilina

    (Financial Conduct Authority)

  • Eric Budish

    (University of Chicago - Booth School of Business; NBER)

Abstract

We use stock exchange message data to quantify the negative aspect of high-frequency trading, known as “latency arbitrage.†The key difference between message data and widely-familiar limit order book data is that message data contain attempts to trade or cancel that fail. This allows the researcher to observe both winners and losers in a race, whereas in limit order book data you cannot see the losers, so you cannot directly see the races. We find that latency-arbitrage races are very frequent (about one per minute per symbol for FTSE 100 stocks), extremely fast (the modal race lasts 5-10 millionths of a second), and account for a large portion of overall trading volume (about 20%). Race participation is concentrated, with the top 6 firms accounting for over 80% of all race wins and losses. Most races (about 90%) are won by an aggressive order as opposed to a cancel attempt; market participants outside the top 6 firms disproportionately provide the liquidity that gets taken in races (about 60%). Our main estimates suggest that eliminating latency arbitrage would reduce the market’s cost of liquidity by 17% and that the total sums at stake are on the order of $5 billion annually in global equity markets.

Suggested Citation

  • Matteo Aquilina & Eric Budish, 2020. "Quantifying the High-Frequency Trading “Arms Race†: A Simple New Methodology and Estimates," Working Papers 2020-86, Becker Friedman Institute for Research In Economics.
  • Handle: RePEc:bfi:wpaper:2020-86
    as

    Download full text from publisher

    File URL: https://repec.bfi.uchicago.edu/RePEc/pdfs/BFI_WP_202086.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Biais, Bruno & Foucault, Thierry & Moinas, Sophie, 2015. "Equilibrium fast trading," Journal of Financial Economics, Elsevier, vol. 116(2), pages 292-313.
    2. Eric Budish & Robin S. Lee & John J. Shim, 2024. "A Theory of Stock Exchange Competition and Innovation: Will the Market Fix the Market?," Journal of Political Economy, University of Chicago Press, vol. 132(4), pages 1209-1246.
    3. Vincent Van Kervel & Albert J. Menkveld, 2019. "High‐Frequency Trading around Large Institutional Orders," Journal of Finance, American Finance Association, vol. 74(3), pages 1091-1137, June.
    4. Brian M. Weller, 2018. "Does Algorithmic Trading Reduce Information Acquisition?," The Review of Financial Studies, Society for Financial Studies, vol. 31(6), pages 2184-2226.
    5. Songzi Du & Haoxiang Zhu, 2017. "What is the Optimal Trading Frequency in Financial Markets?," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 84(4), pages 1606-1651.
    6. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    7. Michael Goldstein & Shengwei Ding & John Hanna & Terrence Hendershott, 2014. "How Slow Is the NBBO? A Comparison with Direct Exchange Feeds," The Financial Review, Eastern Finance Association, vol. 49(2), pages 313-332, May.
    8. Robert Battalio & Shane A. Corwin & Robert Jennings, 2016. "Can Brokers Have It All? On the Relation between Make-Take Fees and Limit Order Execution Quality," Journal of Finance, American Finance Association, vol. 71(5), pages 2193-2238, October.
    9. Glosten, Lawrence R, 1987. "Components of the Bid-Ask Spread and the Statistical Properties of Transaction Prices," Journal of Finance, American Finance Association, vol. 42(5), pages 1293-1307, December.
    10. Terrence Hendershott & Charles M. Jones & Albert J. Menkveld, 2011. "Does Algorithmic Trading Improve Liquidity?," Journal of Finance, American Finance Association, vol. 66(1), pages 1-33, February.
    11. Hoffmann, Peter, 2014. "A dynamic limit order market with fast and slow traders," Journal of Financial Economics, Elsevier, vol. 113(1), pages 156-169.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haeringer, Guillaume & Melton, Hayden, 2020. "High Frequency Fairness," MPRA Paper 103907, University Library of Munich, Germany.
    2. Li, Sida & Wang, Xin & Ye, Mao, 2021. "Who provides liquidity, and when?," Journal of Financial Economics, Elsevier, vol. 141(3), pages 968-980.
    3. Jose S. Penalva & Mikel Tapia, 2021. "Heterogeneity and Competition in Fragmented Markets: Fees Vs Speed," Applied Mathematical Finance, Taylor & Francis Journals, vol. 28(2), pages 143-177, March.
    4. Zheng, Jiayi & Zhu, Yushu, 2023. "Algorithmic trading and block ownership initiation: An information perspective," The British Accounting Review, Elsevier, vol. 55(4).
    5. Mark Marner-Hausen, 2022. "Developing a Framework for Real-Time Trading in a Laboratory Financial Market," ECONtribute Discussion Papers Series 172, University of Bonn and University of Cologne, Germany.
    6. Wolfgang Kuhle, 2021. "On Market Design and Latency Arbitrage," Papers 2202.00127, arXiv.org.
    7. Khairul Zharif Zaharudin & Martin R. Young & Wei‐Huei Hsu, 2022. "High‐frequency trading: Definition, implications, and controversies," Journal of Economic Surveys, Wiley Blackwell, vol. 36(1), pages 75-107, February.
    8. Dodd, Olga & Frijns, Bart & Indriawan, Ivan & Pascual, Roberto, 2023. "US cross-listing and domestic high-frequency trading: Evidence from Canadian stocks," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 301-320.
    9. Baldauf, Markus & Mollner, Joshua, 2022. "Fast traders make a quick buck: The role of speed in liquidity provision," Journal of Financial Markets, Elsevier, vol. 58(C).
    10. Khapko, Mariana & Zoican, Marius, 2021. "Do speed bumps curb low-latency investment? Evidence from a laboratory market," Journal of Financial Markets, Elsevier, vol. 55(C).
    11. Yan Chen & Peter Cramton & John A. List & Axel Ockenfels, 2021. "Market Design, Human Behavior, and Management," Management Science, INFORMS, vol. 67(9), pages 5317-5348, September.
    12. Joffrey Derchu & Philippe Guillot & Thibaut Mastrolia & Mathieu Rosenbaum, 2020. "AHEAD : Ad-Hoc Electronic Auction Design," Papers 2010.02827, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Aquilina & Eric Budish & Peter O'Neill, 2021. "Quantifying the high-frequency trading "arms race"," BIS Working Papers 955, Bank for International Settlements.
    2. Aquilina, Matteo & Budish, Eric B. & O'Neill, Peter, 2020. "Quantifying the High-Frequency Trading "Arms Race": A Simple New Methodology and Estimates," Working Papers 300, The University of Chicago Booth School of Business, George J. Stigler Center for the Study of the Economy and the State.
    3. Mark Marner-Hausen, 2022. "Developing a Framework for Real-Time Trading in a Laboratory Financial Market," ECONtribute Discussion Papers Series 172, University of Bonn and University of Cologne, Germany.
    4. Nicholas Hirschey, 2021. "Do High-Frequency Traders Anticipate Buying and Selling Pressure?," Management Science, INFORMS, vol. 67(6), pages 3321-3345, June.
    5. Matteo Aquilina & Eric Budish & Peter O’Neill, 2022. "Quantifying the High-Frequency Trading “Arms Race”," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 137(1), pages 493-564.
    6. Rzayev, Khaladdin & Ibikunle, Gbenga & Steffen, Tom, 2023. "The market quality implications of speed in cross-platform trading: evidence from Frankfurt-London microwave," LSE Research Online Documents on Economics 119989, London School of Economics and Political Science, LSE Library.
    7. Markus Baldauf & Joshua Mollner, 2020. "High‐Frequency Trading and Market Performance," Journal of Finance, American Finance Association, vol. 75(3), pages 1495-1526, June.
    8. Suchismita Mishra & Le Zhao, 2021. "Order Routing Decisions for a Fragmented Market: A Review," JRFM, MDPI, vol. 14(11), pages 1-32, November.
    9. Sánchez Serrano Antonio, 2020. "High-Frequency Trading and Systemic Risk: A Structured Review of Findings and Policies," Review of Economics, De Gruyter, vol. 71(3), pages 169-195, December.
    10. Conrad, Jennifer & Wahal, Sunil, 2020. "The term structure of liquidity provision," Journal of Financial Economics, Elsevier, vol. 136(1), pages 239-259.
    11. Daniel Fricke & Austin Gerig, 2018. "Too fast or too slow? Determining the optimal speed of financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 18(4), pages 519-532, April.
    12. Choi, Jin Hyuk & Larsen, Kasper & Seppi, Duane J., 2019. "Information and trading targets in a dynamic market equilibrium," Journal of Financial Economics, Elsevier, vol. 132(3), pages 22-49.
    13. Breedon, Francis & Chen, Louisa & Ranaldo, Angelo & Vause, Nicholas, 2023. "Judgment day: Algorithmic trading around the Swiss franc cap removal," Journal of International Economics, Elsevier, vol. 140(C).
    14. Jun Aoyagi, 2019. "Strategic Speed Choice by High-Frequency Traders under Speed Bumps," ISER Discussion Paper 1050, Institute of Social and Economic Research, Osaka University.
    15. Aliyev, Nihad & Huseynov, Fariz & Rzayev, Khaladdin, 2022. "Algorithmic trading and investment-to-price sensitivity," LSE Research Online Documents on Economics 118844, London School of Economics and Political Science, LSE Library.
    16. Vives, Xavier & Cespa, Giovanni, 2016. "Market Transparency and Fragility," CEPR Discussion Papers 11732, C.E.P.R. Discussion Papers.
    17. Cespa, Giovanni & Vives, Xavier, 2017. "High Frequency Trading and Fragility," IESE Research Papers D/1161, IESE Business School.
    18. Rzayev, Khaladdin & Ibikunle, Gbenga & Steffen, Tom, 2023. "The market quality implications of speed in cross-platform trading: Evidence from Frankfurt-London microwave," Journal of Financial Markets, Elsevier, vol. 66(C).
    19. Roşu, Ioanid, 2019. "Fast and slow informed trading," Journal of Financial Markets, Elsevier, vol. 43(C), pages 1-30.
    20. Park, Seongkyu Gilbert & Ryu, Doojin, 2019. "Speed and trading behavior in an order-driven market," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 145-164.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bfi:wpaper:2020-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Toni Shears (email available below). General contact details of provider: https://edirc.repec.org/data/mfichus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.