IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

The Weighting Process in the SHIW

Listed author(s):
  • Ivan Faiella


    (Bank of Italy)

  • Romina Gambacorta


    (Bank of Italy)

The design of a probability sample jointly determines the method used to select sampling units from the population and the estimator of the population parameter. If the sampling fraction is constant for all the units in the sample, then the unweighted sampling mean is an unbiased estimator. In the Survey on Household Income and Wealth (SHIW), units included in the sample have unequal probabilities of selection and each observation is weighted using the inverse of the proper sampling fraction (design weight) adjusted for the response mechanism (nonresponse weight) and for other factors such as imperfect coverage. In this paper we present the weighting scheme of the SHIW and assess its impact on bias and variance of selected estimators. Empirical evidences show that the increasing variability induced by using weighted estimators is compensated by the bias reduction even when performing analysis on sample domains. A set of longitudinal weights is also proposed to account for the selection process and the attrition of the SHIW panel component. These weights, giving their enhanced description of the �panel population�, should be better suited to perform longitudinal analysis; nevertheless their higher variance implies that they wouldn�t always be preferable in terms of mean square error.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Bank of Italy, Economic Research and International Relations Area in its series Temi di discussione (Economic working papers) with number 636.

in new window

Date of creation: Jun 2007
Handle: RePEc:bdi:wptemi:td_636_07
Contact details of provider: Postal:
Via Nazionale, 91 - 00184 Roma

Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Giovanni D'Alessio & Ivan Faiella, 2002. "Non-response behaviour in the Bank of Italy�s Survey of Household Income and Wealth," Temi di discussione (Economic working papers) 462, Bank of Italy, Economic Research and International Relations Area.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bdi:wptemi:td_636_07. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.