IDEAS home Printed from https://ideas.repec.org/p/bcb/wpaper/370.html
   My bibliography  Save this paper

Assessing the Forecast Ability of Risk-Neutral Densities and Real-World Densities from Emerging Markets Currencies

Author

Listed:
  • José Renato Haas Ornelas

Abstract

This paper empirically evaluates Risk-Neutral Densities (RND) and Real-World Densities (RWD) as predictors of future outcomes of emerging markets currencies. The dataset consists of volatility surfaces from 11 emerging market currencies, with approximately six years of daily data, using options with one-month expiration. Therefore, there is a strong overlapping in data, which is tackled with specific econometric techniques. Results of the out-of-sample assessment show that both RND and RWD underweight the tails of the actual distribution. This is probably due to the lack of options with extreme strikes. Although the RWDs perform better than RND in terms of Kolmogorov distance, they still have problems in fitting the tails of actual data. Thus, the risk-aversion adjustment may improve the forecast ability, but it does not solve the tails misfitting.

Suggested Citation

  • José Renato Haas Ornelas, 2014. "Assessing the Forecast Ability of Risk-Neutral Densities and Real-World Densities from Emerging Markets Currencies," Working Papers Series 370, Central Bank of Brazil, Research Department.
  • Handle: RePEc:bcb:wpaper:370
    as

    Download full text from publisher

    File URL: https://www.bcb.gov.br/content/publicacoes/WorkingPaperSeries/wps370.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Christoffersen & Stefano Mazzotta, 2005. "The Accuracy of Density Forecasts from Foreign Exchange Options," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 578-605.
    2. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
    3. Buchen, Peter W. & Kelly, Michael, 1996. "The Maximum Entropy Distribution of an Asset Inferred from Option Prices," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(1), pages 143-159, March.
    4. Alexandros Kostakis & Nikolaos Panigirtzoglou & George Skiadopoulos, 2011. "Market Timing with Option-Implied Distributions: A Forward-Looking Approach," Management Science, INFORMS, vol. 57(7), pages 1231-1249, July.
    5. Marcos Massaki Abe & Eui Jung Chang & Benjamin Miranda Tabak, 2007. "Forecasting Exchange Rate Density Using Parametric Models: the Case of Brazil," Brazilian Review of Finance, Brazilian Society of Finance, vol. 5(1), pages 29-39.
    6. Jackwerth, Jens Carsten, 1999. "Option Implied Risk-Neutral Distributions and Implied Binomial Trees: A Literature Review," MPRA Paper 11634, University Library of Munich, Germany.
    7. Jackwerth, Jens Carsten, 2000. "Recovering Risk Aversion from Option Prices and Realized Returns," The Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 433-451.
    8. Castrén, Olli, 2004. "Do options-implied RND functions on G3 currencies move around the times of interventions on the JPY/USD exchange rate?," Working Paper Series 410, European Central Bank.
    9. Marian Micu, 2005. "Extracting expectations from currency option prices: a comparison of methods," Computing in Economics and Finance 2005 226, Society for Computational Economics.
    10. José Renato Haas Ornelas & José Santiago Fajardo Barbachan & Aquiles Rocha de Farias, 2012. "Estimating Relative Risk Aversion, Risk-Neutral and Real-World Densities using Brazilian Real Currency Options," Working Papers Series 269, Central Bank of Brazil, Research Department.
    11. Andersson, Magnus & Lomakka, Magnus, 2005. "Evaluating implied RNDs by some new confidence interval estimation techniques," Journal of Banking & Finance, Elsevier, vol. 29(6), pages 1535-1557, June.
    12. Fajardo, J. & Farias, A. R. & Ornelas, J. R. H., 2003. "Analyzing the Use of Generalized Hyperbolic Distributions to Value at Risk Calculations," Finance Lab Working Papers flwp_58, Finance Lab, Insper Instituto de Ensino e Pesquisa.
    13. Liu, Xiaoquan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2007. "Closed-form transformations from risk-neutral to real-world distributions," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1501-1520, May.
    14. Ben R. Craig & Joachim G. Keller, 2004. "The forecast ability of risk-neutral densities of foreign exchange," Working Papers (Old Series) 0409, Federal Reserve Bank of Cleveland.
    15. repec:bla:jfinan:v:53:y:1998:i:2:p:499-547 is not listed on IDEAS
    16. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    17. repec:bla:jfinan:v:59:y:2004:i:1:p:407-446 is not listed on IDEAS
    18. Patton, Andrew J. & Timmermann, Allan, 2010. "Monotonicity in asset returns: New tests with applications to the term structure, the CAPM, and portfolio sorts," Journal of Financial Economics, Elsevier, vol. 98(3), pages 605-625, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ornelas, José Renato Haas, 2016. "The Forecast Ability of Option-implied Densities from Emerging Markets Currencies," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 36(1), March.
    2. José Renato Haas Ornelas & José Santiago Fajardo Barbachan & Aquiles Rocha de Farias, 2012. "Estimating Relative Risk Aversion, Risk-Neutral and Real-World Densities using Brazilian Real Currency Options," Working Papers Series 269, Central Bank of Brazil, Research Department.
    3. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    4. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle: survey and outlook," Annals of Finance, Springer, vol. 14(3), pages 289-329, August.
    5. Ivanova, Vesela & Puigvert Gutiérrez, Josep Maria, 2014. "Interest rate forecasts, state price densities and risk premium from Euribor options," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 210-223.
    6. Shackleton, Mark B. & Taylor, Stephen J. & Yu, Peng, 2010. "A multi-horizon comparison of density forecasts for the S&P 500 using index returns and option prices," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2678-2693, November.
    7. José Renato Haas Ornelas & Marcelo Yoshio Takami, 2011. "Recovering Risk-Neutral Densities from Brazilian Interest Rate Options," Brazilian Review of Finance, Brazilian Society of Finance, vol. 9(1), pages 9-26.
    8. Funke, Michael & Loermann, Julius & Tsang, Andrew, 2017. "The information content in the offshore Renminbi foreign-exchange option market: Analytics and implied USD/CNH densities," BOFIT Discussion Papers 15/2017, Bank of Finland Institute for Emerging Economies (BOFIT).
    9. Leonidas Tsiaras, 2010. "Dynamic Models of Exchange Rate Dependence Using Option Prices and Historical Returns," CREATES Research Papers 2010-35, Department of Economics and Business Economics, Aarhus University.
    10. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    11. repec:zbw:bofitp:2017_015 is not listed on IDEAS
    12. Francisco Alonso & Roberto Blanco & Gonzalo Rubio, 2009. "Option-implied preferences adjustments, density forecasts, and the equity risk premium," Spanish Economic Review, Springer;Spanish Economic Association, vol. 11(2), pages 141-164, June.
    13. Funke, Michael & Loermann, Julius & Tsang, Andrew, 2017. "The information content in the offshore Renminbi foreign-exchange option market: Analytics and implied USD/CNH densities," BOFIT Discussion Papers 15/2017, Bank of Finland Institute for Emerging Economies (BOFIT).
    14. Maria Kyriacou & Jose Olmo & Marius Strittmatter, 2021. "Optimal portfolio allocation using option‐implied information," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(2), pages 266-285, February.
    15. Vladimir Zdorovenin & Jacques Pézier, 2011. "Does Information Content of Option Prices Add Value for Asset Allocation?," ICMA Centre Discussion Papers in Finance icma-dp2011-03, Henley Business School, University of Reading.
    16. Liu, Xiaoquan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2007. "Closed-form transformations from risk-neutral to real-world distributions," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1501-1520, May.
    17. Pedro Serrano & Antoni Vaello‐Sebastià & M. Magdalena Vich Llompart, 2024. "International evidence of the forecasting ability of option‐implied distributions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1447-1464, August.
    18. Ricardo Crisóstomo, 2021. "Estimating real‐world probabilities: A forward‐looking behavioral framework," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1797-1823, November.
    19. Fabozzi, Frank J. & Leccadito, Arturo & Tunaru, Radu S., 2014. "Extracting market information from equity options with exponential Lévy processes," Journal of Economic Dynamics and Control, Elsevier, vol. 38(C), pages 125-141.
    20. Jarno Talponen, 2013. "Matching distributions: Asset pricing with density shape correction," Papers 1312.4227, arXiv.org, revised Mar 2018.
    21. Wagner Piazza Gaglianone & Jaqueline Terra Moura Marins, 2014. "Risk Assessment of the Brazilian FX Rate," Working Papers Series 344, Central Bank of Brazil, Research Department.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bcb:wpaper:370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rodrigo Barbone Gonzalez (email available below). General contact details of provider: https://www.bcb.gov.br/en .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.