IDEAS home Printed from https://ideas.repec.org/p/bca/bocawp/25-14.html
   My bibliography  Save this paper

Partial Identification of Heteroskedastic Structural Vector Autoregressions: Theory and Bayesian Inference

Author

Listed:
  • Helmut Lütkepohl
  • Fei Shang
  • Luis Uzeda
  • Tomasz Woźniak

Abstract

We consider structural vector autoregressions that are identified through stochastic volatility. Our analysis focuses on whether a particular structural shock can be identified through heteroskedasticity without imposing any sign or exclusion restrictions. Three contributions emerge from our exercise: (i) a set of conditions that ensures the matrix containing structural parameters is either partially or globally unique; (ii) a shrinkage prior distribution for the conditional variance of structural shocks, centred on the hypothesis of homoskedasticity; and (iii) a statistical procedure for assessing the validity of the conditions outlined in (i). Our shrinkage prior ensures that the evidence for identifying a structural shock relies predominantly on the data and is less influenced by the prior distribution. We demonstrate the usefulness of our framework through a fiscal structural model and a series of simulation exercises.

Suggested Citation

  • Helmut Lütkepohl & Fei Shang & Luis Uzeda & Tomasz Woźniak, 2025. "Partial Identification of Heteroskedastic Structural Vector Autoregressions: Theory and Bayesian Inference," Staff Working Papers 25-14, Bank of Canada.
  • Handle: RePEc:bca:bocawp:25-14
    DOI: 10.34989/swp-2025-14
    as

    Download full text from publisher

    File URL: https://doi.org/10.34989/swp-2025-14
    File Function: Full text
    Download Restriction: no

    File URL: https://libkey.io/10.34989/swp-2025-14?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    Econometric and statistical methods; Fiscal policy;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E62 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Fiscal Policy; Modern Monetary Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bca:bocawp:25-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bocgvca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.