IDEAS home Printed from
   My bibliography  Save this paper

Auswirkungen unterschiedlicher Assetkorrelationen in Mehr-Sektoren-Kreditportfoliomodellen


  • Hamerle, Alfred
  • Knapp, Michael
  • Wildenauer, Nicole


Im vorliegenden Beitrag wird untersucht, wie die Assetkorrelation zwischen zwei Sektoren auf einfache Weise berechnet werden kann und wie sich unterschiedliche Korrelationsannahmen auf die Form und Risikomaße von Verlustverteilungen auswirken. Dazu werden Ausfallzeitreihen von zwei us-amerikanischen Sektoren untersucht. Zum einen wird das Segment Industrieunternehmen und zum anderen das Retailsegment Kreditkarten betrachtet. Es wird gezeigt, wie unter Verwendung eines dynamischen Modells die Schuldnerbonität bzw. die Ausfallwahrscheinlichkeit unter Einbeziehung schuldnerspezifischer und makroökonomischer Faktoren geschätzt werden kann. Es stellt sich heraus, dass durch die Einbeziehung vor allem makroökonomischer Größen die Ausfallwahrscheinlichkeit Point in Time prognostiziert und sowohl die Assetkorrelation innerhalb eines Sektors bzw. Risikosegments als auch die intersektorale Korrelation verringert werden können. Dies führt im Allgemeinen zu präziseren Prognosen der Verlustverteilungen. In this paper we focus on the analysis of the effect of the asset correlation between two segments, its basic calculation and its impacts on the risk measures of loss distributions. For an empirical study we examine default histories of two American segments. One is the sector industry and the other is the (retail) segment credit cards. We show how the borrowers creditworthiness and the probability of default can be estimated using issuer-specific and macroeconomic variables in a dynamic approach. Using macroeconomic variables the probability of default can be predicted point in time. The asset correlation within a sector as well as the asset correlation between sectors can be reduced leading to a more precise prediction of loss distributions.

Suggested Citation

  • Hamerle, Alfred & Knapp, Michael & Wildenauer, Nicole, 2005. "Auswirkungen unterschiedlicher Assetkorrelationen in Mehr-Sektoren-Kreditportfoliomodellen," University of Regensburg Working Papers in Business, Economics and Management Information Systems 409, University of Regensburg, Department of Economics.
  • Handle: RePEc:bay:rdwiwi:582

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Merton, Robert C., 1977. "On the pricing of contingent claims and the Modigliani-Miller theorem," Journal of Financial Economics, Elsevier, vol. 5(2), pages 241-249, November.
    2. Gordy, Michael B., 2000. "A comparative anatomy of credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 119-149, January.
    3. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    4. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    5. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    6. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    7. Robert A. Jarrow & Stuart M. Turnbull, 2008. "Pricing Derivatives on Financial Securities Subject to Credit Risk," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 17, pages 377-409 World Scientific Publishing Co. Pte. Ltd..
    8. Hamerle, Alfred & Liebig, Thilo & Scheule, Harald, 2004. "Forecasting Credit Portfolio Risk," Discussion Paper Series 2: Banking and Financial Studies 2004,01, Deutsche Bundesbank.
    9. Rösch, Daniel, 2003. "Correlations and Business Cycles of Credit Risk: Evidence from Bankruptcies in Germany," University of Regensburg Working Papers in Business, Economics and Management Information Systems 380, University of Regensburg, Department of Economics.
    10. Hamerle, Alfred & Liebig, Thilo & Rösch, Daniel, 2003. "Credit Risk Factor Modeling and the Basel II IRB Approach," Discussion Paper Series 2: Banking and Financial Studies 2003,02, Deutsche Bundesbank.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Ausfallwahrscheinlichkeit ; Kreditrisiko; Probability of Default ; PD ; Assetkorrelation ; Ausfallkorrelation ; Kreditrisikomanagement; Probability of Default ; asset correlation ; default correlation ; credit risk ; credit risk management;

    JEL classification:

    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bay:rdwiwi:582. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gernot Deinzer). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.