IDEAS home Printed from https://ideas.repec.org/p/aue/wpaper/2529.html
   My bibliography  Save this paper

Too hard to decarbonize: Insights from a decision support tool for the Greek maritime operations

Author

Listed:
  • Phoebe Koundouri
  • Angelos Alamanos
  • Christopher Deranian
  • Jorge Andres Garcia
  • Olympia Nisiforou

Abstract

The Greek maritime sector, one of the largest in the world, faces multiple economic, environmental and development challenges, requiring careful long-term investment decisions. In this paper we present the application of a free, open-source Investment Decision Support tool we have developed, the MaritimeGCH, applied for the Greek fleet. We quantify the effect of two main interventions for a cost-effective carbon abatement, under the recent EU environmental regulations: the implementation of mature on-ship emission reduction technologies and transition scenarios to cleaner fuels. While significant emissions are achievable, even ambitious interventions fall short of fully decarbonizing the sector by 2050. This suggests that a more unified set of policy solutions are needed to achieve the national commitments.

Suggested Citation

  • Phoebe Koundouri & Angelos Alamanos & Christopher Deranian & Jorge Andres Garcia & Olympia Nisiforou, 2025. "Too hard to decarbonize: Insights from a decision support tool for the Greek maritime operations," DEOS Working Papers 2529, Athens University of Economics and Business.
  • Handle: RePEc:aue:wpaper:2529
    as

    Download full text from publisher

    File URL: http://wpa.deos.aueb.gr/docs/2025.maritimegch.pdf
    File Function: First version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Koundouri, Phoebe & Alamanos, Angelos & Sachs, Jeffrey, 2024. "Innovating for Sustainability: The Global Climate Hub," MPRA Paper 121978, University Library of Munich, Germany.
    2. Johnson, Hannes & Styhre, Linda, 2015. "Increased energy efficiency in short sea shipping through decreased time in port," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 167-178.
    3. Inal, Omer Berkehan & Charpentier, Jean-Frédéric & Deniz, Cengiz, 2022. "Hybrid power and propulsion systems for ships: Current status and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Aditya Sinha & Aranya Venkatesh & Katherine Jordan & Cameron Wade & Hadi Eshraghi & Anderson R. Queiroz & Paulina Jaramillo & Jeremiah X. Johnson, 2024. "Diverse decarbonization pathways under near cost-optimal futures," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Angelos Alamanos, 2024. "The Global Climate Hub," Nature Sustainability, Nature, vol. 7(4), pages 375-376, April.
    6. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2021. "Techno-economic assessment of alternative marine fuels for inland shipping in Croatia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Wang, Shuaian & Meng, Qiang, 2012. "Sailing speed optimization for container ships in a liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 701-714.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angelos Alamanos & Olympia Nisiforou & Lydia Papadaki & Phoebe Koundouri, 2025. "Sustainable shipping within the Global Climate Hub's models integration," DEOS Working Papers 2513, Athens University of Economics and Business.
    2. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Phoebe Koundouri & Angelos Alamanos & Jeffrey D Sachs, 2024. "Innovating for Sustainability: The Global Climate Hub," DEOS Working Papers 2403, Athens University of Economics and Business.
    4. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    5. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.
    6. Asghari, Mohammad & Jaber, Mohamad Y. & Mirzapour Al-e-hashem, S.M.J., 2023. "Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service," European Journal of Operational Research, Elsevier, vol. 307(2), pages 627-644.
    7. Xinyu Li & Yi Zuo & Junhao Jiang, 2022. "Application of Regression Analysis Using Broad Learning System for Time-Series Forecast of Ship Fuel Consumption," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    8. Shuaian Wang & Dan Zhuge & Lu Zhen & Chung-Yee Lee, 2021. "Liner Shipping Service Planning Under Sulfur Emission Regulations," Transportation Science, INFORMS, vol. 55(2), pages 491-509, March.
    9. Huang, Kai & An, Kun & Rich, Jeppe & Ma, Wanjing, 2020. "Vehicle relocation in one-way station-based electric carsharing systems: A comparative study of operator-based and user-based methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    10. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Wang, Shuaian & Meng, Qiang & Liu, Zhiyuan, 2013. "Bunker consumption optimization methods in shipping: A critical review and extensions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 49-62.
    12. Shao, Shuai & Xu, Min & Tan, Zhijia & Zhen, Lu, 2024. "Ship deployment problem with green technology adoption for an inland river carrier under non-identical streamflow and speed limits," Transport Policy, Elsevier, vol. 157(C), pages 46-56.
    13. Xiangang Lan & Xiaode Zuo & Qin Tao, 2023. "Container Shipping Optimization under Different Carbon Emission Policies: A Case Study," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    14. Santini, Alberto & Plum, Christian E.M. & Ropke, Stefan, 2018. "A branch-and-price approach to the feeder network design problem," European Journal of Operational Research, Elsevier, vol. 264(2), pages 607-622.
    15. Sun, Xiaojun & Yao, Chong & Song, Enzhe & Yang, Qidong & Yang, Xuchang, 2022. "Optimal control of transient processes in marine hybrid propulsion systems: Modeling, optimization and performance enhancement," Applied Energy, Elsevier, vol. 321(C).
    16. Zhen, Lu & Shen, Tao & Wang, Shuaian & Yu, Shucheng, 2016. "Models on ship scheduling in transshipment hubs with considering bunker cost," International Journal of Production Economics, Elsevier, vol. 173(C), pages 111-121.
    17. Hee Seung Moon & Won Young Park & Thomas Hendrickson & Amol Phadke & Natalie Popovich, 2025. "Exploring the cost and emissions impacts, feasibility and scalability of battery electric ships," Nature Energy, Nature, vol. 10(1), pages 41-54, January.
    18. Di Vaio, Assunta & Varriale, Luisa & Alvino, Federico, 2018. "Key performance indicators for developing environmentally sustainable and energy efficient ports: Evidence from Italy," Energy Policy, Elsevier, vol. 122(C), pages 229-240.
    19. Taiba Zahid & Fouzia Gillani & Usman Ghafoor & Muhammad Raheel Bhutta, 2022. "Synchromodal Transportation Analysis of the One-Belt-One-Road Initiative Based on a Bi-Objective Mathematical Model," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    20. Wang, Shuaian & Qu, Xiaobo & Yang, Ying, 2015. "Estimation of the perceived value of transit time for containerized cargoes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 298-308.

    More about this item

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • L92 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Railroads and Other Surface Transportation
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aue:wpaper:2529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ekaterini Glynou (email available below). General contact details of provider: https://edirc.repec.org/data/diauegr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.