IDEAS home Printed from
   My bibliography  Save this paper

Edgeworth and Moment Approximations: The Case of MM and QML Estimators for the MA(1) Models


  • Dimitra Kyriakopoulou


  • Antonis Demos

    () (


Extending the results in Sargan (1976) and Tanaka (1984), we derive the asymptotic expansions, of the Edgeworth and Nagar type, of the MM and QML estimators of the 1^{st} order autocorrelation and the MA parameter for the MA(1) model. It turns out that the asymptotic properties of the estimators depend on whether the mean of the process is known or estimated. A comparison of the Nagar expansions, either in terms of bias or MSE, reveals that there is not uniform superiority of neither of the estimators, when the mean of the process is estimated. This is also confirmed by simulations. In the zero-mean case, and on theoretical grounds, the QMLEs are superior to the MM ones in both bias and MSE terms. The results presented here are important for deciding on the estimation method we choose, as well as for bias reduction and increasing the efficiency of the estimators.

Suggested Citation

  • Dimitra Kyriakopoulou & Antonis Demos, 2008. "Edgeworth and Moment Approximations: The Case of MM and QML Estimators for the MA(1) Models," DEOS Working Papers 1003, Athens University of Economics and Business, revised 03 May 2010.
  • Handle: RePEc:aue:wpaper:1003

    Download full text from publisher

    File URL:
    File Function: First version
    Download Restriction: no


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Arvanitis Stelios & Demos Antonis, 2018. "On the Validity of Edgeworth Expansions and Moment Approximations for Three Indirect Inference Estimators," Journal of Econometric Methods, De Gruyter, vol. 7(1), pages 1-38, January.
    2. Stelios Arvanitis & Antonis Demos, "undated". "On the Validity of Edgeworth Expansions and Moment Approximations for Three Indirect Estimators (Extended Revised Appendix)," DEOS Working Papers 1330, Athens University of Economics and Business, revised 28 Jun 2013.
    3. Veiga, Helena & Ruiz, Esther & Gonçalves Mazzeu, Joao Henrique, 2015. "Model uncertainty and the forecast accuracy of ARMA models: A survey," DES - Working Papers. Statistics and Econometrics. WS ws1508, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Stelios Arvanitis & Antonis Demos, "undated". "A Class of Indirect Inference Estimators: Higher Order Asymptotics and Approximate Bias Correction (Revised)," DEOS Working Papers 1411, Athens University of Economics and Business, revised 23 Sep 2014.
    5. Antonis Demos & Dimitra Kyriakopoulou, 2018. "Finite Sample Theory and Bias Correction of Maximum Likelihood Estimators in the EGARCH Model," DEOS Working Papers 1802, Athens University of Economics and Business.
    6. Antonis Demos & Stelios Arvanitis, 2010. "A New Class of Indirect Estimators and Bias Correction," DEOS Working Papers 1023, Athens University of Economics and Business.

    More about this item


    Edgeworth expansion; moving average process; method of moments; Quasi Maximum Likelihood; autocorrelation; asymptotic properties.;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aue:wpaper:1003. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekaterini Glynou). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.