IDEAS home Printed from
   My bibliography  Save this paper

Bayesian estimation of GARCH model by hybrid Monte Carlo


  • Tetsuya Takaishi


The hybrid Monte Carlo (HMC) algorithm is used for Bayesian analysis of the generalized autoregressive conditional heteroscedasticity (GARCH) model. The HMC algorithm is one of Markov chain Monte Carlo (MCMC) algorithms and it updates all parameters at once. We demonstrate that how the HMC reproduces the GARCH parameters correctly. The algorithm is rather general and it can be applied to other models like stochastic volatility models.

Suggested Citation

  • Tetsuya Takaishi, 2007. "Bayesian estimation of GARCH model by hybrid Monte Carlo," Papers physics/0702240,
  • Handle: RePEc:arx:papers:physics/0702240

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:physics/0702240. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.