IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0301278.html
   My bibliography  Save this paper

A theory of bond portfolios

Author

Listed:
  • Ivar Ekeland
  • Erik Taflin

Abstract

We introduce a bond portfolio management theory based on foundations similar to those of stock portfolio management. A general continuous-time zero-coupon market is considered. The problem of optimal portfolios of zero-coupon bonds is solved for general utility functions, under a condition of no-arbitrage in the zero-coupon market. A mutual fund theorem is proved, in the case of deterministic volatilities. Explicit expressions are given for the optimal solutions for several utility functions.

Suggested Citation

  • Ivar Ekeland & Erik Taflin, 2003. "A theory of bond portfolios," Papers math/0301278, arXiv.org, revised May 2005.
  • Handle: RePEc:arx:papers:math/0301278
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0301278
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
    2. Tomas Björk & Yuri Kabanov & Wolfgang Runggaldier, 1997. "Bond Market Structure in the Presence of Marked Point Processes," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 211-239.
    3. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    4. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andersson, Patrik & Lagerås, Andreas N., 2013. "Optimal bond portfolios with fixed time to maturity," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 429-438.
    2. Erik Taflin, 2009. "Generalized integrands and bond portfolios: Pitfalls and counter examples," Papers 0909.2341, arXiv.org, revised Jan 2011.
    3. Fred Benth & Jukka Lempa, 2014. "Optimal portfolios in commodity futures markets," Finance and Stochastics, Springer, vol. 18(2), pages 407-430, April.
    4. Irene Klein & Thorsten Schmidt & Josef Teichmann, 2013. "When roll-overs do not qualify as num\'eraire: bond markets beyond short rate paradigms," Papers 1310.0032, arXiv.org.
    5. Fred Espen Benth & Paul Kruhner, 2014. "Representation of infinite dimensional forward price models in commodity markets," Papers 1403.4111, arXiv.org.
    6. Bruno Bouchard & Emmanuel Lepinette & Erik Taflin, 2013. "Robust no-free lunch with vanishing risk, a continuum of assets and proportional transaction costs," Papers 1302.0361, arXiv.org.
    7. Oleksii Mostovyi, 2014. "Utility maximization in the large markets," Papers 1403.6175, arXiv.org, revised Oct 2014.
    8. Yalc{c}in Aktar & Erik Taflin, 2014. "A remark on smooth solutions to a stochastic control problem with a power terminal cost function and stochastic volatilities," Papers 1405.3566, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0301278. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.