IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1310.0032.html
   My bibliography  Save this paper

When roll-overs do not qualify as num\'eraire: bond markets beyond short rate paradigms

Author

Listed:
  • Irene Klein
  • Thorsten Schmidt
  • Josef Teichmann

Abstract

We investigate default-free bond markets where the standard relationship between a possibly existing bank account process and the term structure of bond prices is broken, i.e. the bank account process is not a valid num\'eraire. We argue that this feature is not the exception but rather the rule in bond markets when starting with, e.g., terminal bonds as num\'eraires. Our setting are general c\`adl\`ag processes as bond prices, where we employ directly methods from large financial markets. Moreover, we do not restrict price process to be semimartingales, which allows for example to consider markets driven by fractional Brownian motion. In the core of the article we relate the appropriate no arbitrage assumptions (NAFL), i.e. no asymptotic free lunch, to the existence of an equivalent local martingale measure with respect to the terminal bond as num\'eraire, and no arbitrage opportunities of the first kind (NAA1) to the existence of a supermartingale deflator, respectively. In all settings we obtain existence of a generalized bank account as a limit of convex combinations of roll-over bonds. Additionally we provide an alternative definition of the concept of a num\'eraire, leading to a possibly interesting connection to bubbles. If we can construct a bank account process through roll-overs, we can relate the impossibility of taking the bank account as num\'eraire to liquidity effects. Here we enter endogenously the arena of multiple yield curves. The theory is illustrated by several examples.

Suggested Citation

  • Irene Klein & Thorsten Schmidt & Josef Teichmann, 2013. "When roll-overs do not qualify as num\'eraire: bond markets beyond short rate paradigms," Papers 1310.0032, arXiv.org.
  • Handle: RePEc:arx:papers:1310.0032
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1310.0032
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Alan Brace & Dariusz G¬łatarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155.
    2. Ivar Ekeland & Erik Taflin, 2003. "A theory of bond portfolios," Papers math/0301278, arXiv.org, revised May 2005.
    3. Y.M. Kabanov & D.O. Kramkov, 1998. "Asymptotic arbitrage in large financial markets," Finance and Stochastics, Springer, vol. 2(2), pages 143-172.
    4. Eckhard Platen, 2006. "A Benchmark Approach To Finance," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 131-151.
    5. Alexander Cox & David Hobson, 2005. "Local martingales, bubbles and option prices," Finance and Stochastics, Springer, vol. 9(4), pages 477-492, October.
    6. W. Schachermayer, 1994. "Martingale Measures For Discrete-Time Processes With Infinite Horizon," Mathematical Finance, Wiley Blackwell, vol. 4(1), pages 25-55.
    7. repec:dau:papers:123456789/6041 is not listed on IDEAS
    8. Robert Fernholz & Ioannis Karatzas, 2005. "Relative arbitrage in volatility-stabilized markets," Annals of Finance, Springer, vol. 1(2), pages 149-177, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1310.0032. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.