IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v72y2017icp107-121.html
   My bibliography  Save this article

Existence of optimal consumption strategies in markets with longevity risk

Author

Listed:
  • de Kort, J.
  • Vellekoop, M.H.

Abstract

Survival bonds are financial instruments with a payoff that depends on human mortality rates. In markets that contain such bonds, agents optimizing expected utility of consumption and terminal wealth can mitigate their longevity risk. To examine how this influences optimal portfolio strategies and consumption patterns, we define a model in which the death of the agent is represented by a single jump process with Cox–Ingersoll–Ross intensity. This implies that our stochastic mortality rate is guaranteed to be nonnegative, in contrast to many other models in the literature. We derive explicit conditions for existence of an optimal consumption and investment strategy in terms of model parameters by analysing certain inhomogeneous Riccati equations. We find that constraints must be imposed on the market price of longevity risk to have a well-posed problem and we derive the optimal strategies when such constraints are satisfied.

Suggested Citation

  • de Kort, J. & Vellekoop, M.H., 2017. "Existence of optimal consumption strategies in markets with longevity risk," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 107-121.
  • Handle: RePEc:eee:insuma:v:72:y:2017:i:c:p:107-121
    DOI: 10.1016/j.insmatheco.2016.10.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668716300221
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dybvig, Philip H. & Liu, Hong, 2010. "Lifetime consumption and investment: Retirement and constrained borrowing," Journal of Economic Theory, Elsevier, vol. 145(3), pages 885-907, May.
    2. George Chacko & Luis M. Viceira, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1369-1402.
    3. Menoncin, Francesco, 2008. "The role of longevity bonds in optimal portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 343-358, February.
    4. David Blake & Andrew Cairns & Guy Coughlan & Kevin Dowd & Richard MacMinn, 2013. "The New Life Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 501-558, September.
    5. Blanchet-Scalliet, Christophette & El Karoui, Nicole & Jeanblanc, Monique & Martellini, Lionel, 2008. "Optimal investment decisions when time-horizon is uncertain," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1100-1113, December.
    6. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    7. Charupat, Narat & Milevsky, Moshe A., 2002. "Optimal asset allocation in life annuities: a note," Insurance: Mathematics and Economics, Elsevier, vol. 30(2), pages 199-209, April.
    8. Schrager, David F., 2006. "Affine stochastic mortality," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 81-97, February.
    9. Richard, Scott F., 1975. "Optimal consumption, portfolio and life insurance rules for an uncertain lived individual in a continuous time model," Journal of Financial Economics, Elsevier, vol. 2(2), pages 187-203, June.
    10. Ralf Korn & Holger Kraft, 2004. "On The Stability Of Continuous-Time Portfolio Problems With Stochastic Opportunity Set," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 403-414.
    11. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    12. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    13. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    14. Guambe, Calisto & Kufakunesu, Rodwell, 2015. "A note on optimal investment–consumption–insurance in a Lévy market," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 30-36.
    15. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
    16. Dahl, Mikkel, 2004. "Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 113-136, August.
    17. Menahem E. Yaari, 1965. "Uncertain Lifetime, Life Insurance, and the Theory of the Consumer," Review of Economic Studies, Oxford University Press, vol. 32(2), pages 137-150.
    18. Huang, Huaxiong & Milevsky, Moshe A., 2008. "Portfolio choice and mortality-contingent claims: The general HARA case," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2444-2452, November.
    19. Holger Kraft, 2005. "Optimal portfolios and Heston's stochastic volatility model: an explicit solution for power utility," Quantitative Finance, Taylor & Francis Journals, vol. 5(3), pages 303-313.
    20. Francesco Menoncin & Luca Regis, 2015. "Longevity assets and pre-retirement consumption/portfolio decisions," Working Papers 2/2015, IMT Institute for Advanced Studies Lucca, revised May 2015.
    21. Huang, Huaxiong & Milevsky, Moshe A. & Salisbury, Thomas S., 2012. "Optimal retirement consumption with a stochastic force of mortality," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 282-291.
    22. Milevsky, Moshe A. & Young, Virginia R., 2007. "Annuitization and asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 31(9), pages 3138-3177, September.
    23. Huaxiong Huang & Moshe A. Milevsky & Thomas S. Salisbury, 2012. "Optimal retirement consumption with a stochastic force of mortality," Papers 1205.2295, arXiv.org.
    24. Pliska, Stanley R. & Ye, Jinchun, 2007. "Optimal life insurance purchase and consumption/investment under uncertain lifetime," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1307-1319, May.
    25. Yoosef Maghsoodi, 1996. "Solution Of The Extended Cir Term Structure And Bond Option Valuation," Mathematical Finance, Wiley Blackwell, vol. 6(1), pages 89-109.
    26. Hakansson, Nils H, 1969. "Optimal Investment and Consumption Strategies under Risk, an Uncertain Lifetime, and Insurance," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 10(3), pages 443-466, October.
    27. Griselda Deelstra & Martino Grasselli & Pierre-François Koehl, 2000. "Optimal investment strategies in a CIR framework," ULB Institutional Repository 2013/7594, ULB -- Universite Libre de Bruxelles.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:72:y:2017:i:c:p:107-121. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.