IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v5y2005i3p303-313.html
   My bibliography  Save this article

Optimal portfolios and Heston's stochastic volatility model: an explicit solution for power utility

Author

Listed:
  • Holger Kraft

Abstract

Given an investor maximizing utility from terminal wealth with respect to a power utility function, we present a verification result for portfolio problems with stochastic volatility. Applying this result, we solve the portfolio problem for Heston's stochastic volatility model. We find that only under a specific condition on the model parameters does the problem possess a unique solution leading to a partial equilibrium. Finally, it is demonstrated that the results critically hinge upon the specification of the market price of risk. We conclude that, in applications, one has to be very careful when exogenously specifying the form of the market price of risk.

Suggested Citation

  • Holger Kraft, 2005. "Optimal portfolios and Heston's stochastic volatility model: an explicit solution for power utility," Quantitative Finance, Taylor & Francis Journals, vol. 5(3), pages 303-313.
  • Handle: RePEc:taf:quantf:v:5:y:2005:i:3:p:303-313
    DOI: 10.1080/14697680500149503
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680500149503
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680500149503?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. repec:cdl:anderf:qt36v1d9zg is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:5:y:2005:i:3:p:303-313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.