IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.20283.html

Solving Heterogeneous Agent Models with Physics-informed Neural Networks

Author

Listed:
  • Marta Grzeskiewicz

Abstract

Understanding household behaviour is essential for modelling macroeconomic dynamics and designing effective policy. While heterogeneous agent models offer a more realistic alternative to representative agent frameworks, their implementation poses significant computational challenges, particularly in continuous time. The Aiyagari-Bewley-Huggett (ABH) framework, recast as a system of partial differential equations, typically relies on grid-based solvers that suffer from the curse of dimensionality, high computational cost, and numerical inaccuracies. This paper introduces the ABH-PINN solver, an approach based on Physics-Informed Neural Networks (PINNs), which embeds the Hamilton-Jacobi-Bellman and Kolmogorov Forward equations directly into the neural network training objective. By replacing grid-based approximation with mesh-free, differentiable function learning, the ABH-PINN solver benefits from the advantages of PINNs of improved scalability, smoother solutions, and computational efficiency. Preliminary results show that the PINN-based approach is able to obtain economically valid results matching the established finite-difference solvers.

Suggested Citation

  • Marta Grzeskiewicz, 2025. "Solving Heterogeneous Agent Models with Physics-informed Neural Networks," Papers 2511.20283, arXiv.org.
  • Handle: RePEc:arx:papers:2511.20283
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.20283
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mariacristina De Nardi, 2015. "Quantitative Models of Wealth Inequality: A Survey," NBER Working Papers 21106, National Bureau of Economic Research, Inc.
    2. Achdou, Yves & Han, Jiequn & Lasry, Jean Michel & Lions, Pierre Louis & Moll, Ben, 2022. "Income and wealth distribution in macroeconomics: a continuous-time approach," LSE Research Online Documents on Economics 107422, London School of Economics and Political Science, LSE Library.
    3. Jesús Fernández‐Villaverde & Samuel Hurtado & Galo Nuño, 2025. "Corrigendum: Financial Frictions and the Wealth Distribution," Econometrica, Econometric Society, vol. 93(4), pages 1491-1496, July.
    4. Yves Achdou & Jiequn Han & Jean-Michel Lasry & Pierre-Louis Lionse & Benjamin Moll, 2022. "Income and Wealth Distribution in Macroeconomics: A Continuous-Time Approach," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(1), pages 45-86.
    5. Per Krusell & Anthony A. Smith & Jr., 1998. "Income and Wealth Heterogeneity in the Macroeconomy," Journal of Political Economy, University of Chicago Press, vol. 106(5), pages 867-896, October.
    6. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, December.
    7. SeHyoun Ahn & Greg Kaplan & Benjamin Moll & Thomas Winberry & Christian Wolf, 2018. "When Inequality Matters for Macro and Macro Matters for Inequality," NBER Macroeconomics Annual, University of Chicago Press, vol. 32(1), pages 1-75.
    8. Ravn, Morten O. & Sterk, Vincent, 2017. "Job uncertainty and deep recessions," Journal of Monetary Economics, Elsevier, vol. 90(C), pages 125-141.
    9. Benjamin Moll, 2014. "Productivity Losses from Financial Frictions: Can Self-Financing Undo Capital Misallocation?," American Economic Review, American Economic Association, vol. 104(10), pages 3186-3221, October.
    10. Greg Kaplan & Benjamin Moll & Giovanni L. Violante, 2018. "Monetary Policy According to HANK," American Economic Review, American Economic Association, vol. 108(3), pages 697-743, March.
    11. Bewley, Truman, 1977. "The permanent income hypothesis: A theoretical formulation," Journal of Economic Theory, Elsevier, vol. 16(2), pages 252-292, December.
    12. Greg Kaplan & Giovanni L. Violante, 2014. "A Model of the Consumption Response to Fiscal Stimulus Payments," Econometrica, Econometric Society, vol. 82(4), pages 1199-1239, July.
    13. Hainaut, Donatien & Casas, Alex, 2024. "Option pricing in the Heston model with Physics inspired neural networks," LIDAM Discussion Papers ISBA 2024002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Adrien Auclert & Bence Bardóczy & Matthew Rognlie & Ludwig Straub, 2021. "Using the Sequence‐Space Jacobian to Solve and Estimate Heterogeneous‐Agent Models," Econometrica, Econometric Society, vol. 89(5), pages 2375-2408, September.
    15. Mariacristina De Nardi, 2004. "Wealth Inequality and Intergenerational Links," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(3), pages 743-768.
    16. Donatien Hainaut & Alex Casas, 2024. "Option pricing in the Heston model with physics inspired neural networks," Annals of Finance, Springer, vol. 20(3), pages 353-376, September.
    17. S. Rao Aiyagari, 1994. "Uninsured Idiosyncratic Risk and Aggregate Saving," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 109(3), pages 659-684.
    18. Huggett, Mark, 1993. "The risk-free rate in heterogeneous-agent incomplete-insurance economies," Journal of Economic Dynamics and Control, Elsevier, vol. 17(5-6), pages 953-969.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenxin Zhang & Yujie Yang & Wenwen Hou, 2025. "Trade Friction in Two-Country HANK with Financial Friction," Computational Economics, Springer;Society for Computational Economics, vol. 65(1), pages 365-394, January.
    2. Schesch, Constantin, 2024. "Pseudospectral methods for continuous-time heterogeneous-agent models," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
    3. Krueger, D. & Mitman, K. & Perri, F., 2016. "Macroeconomics and Household Heterogeneity," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 843-921, Elsevier.
    4. Zhouzhou Gu & Mathieu Lauri`ere & Sebastian Merkel & Jonathan Payne, 2024. "Global Solutions to Master Equations for Continuous Time Heterogeneous Agent Macroeconomic Models," Papers 2406.13726, arXiv.org.
    5. Marlon Azinovic-Yang & Jan v{Z}emliv{c}ka, 2025. "Deep Learning in the Sequence Space," Papers 2509.13623, arXiv.org.
    6. Isaiah Hull & Or Sattath & Eleni Diamanti & Göran Wendin, 2024. "Quantum Technology for Economists," Contributions to Economics, Springer, number 978-3-031-50780-9, March.
    7. Fernández-Villaverde, Jesús & Marbet, Joël & Nuño, Galo & Rachedi, Omar, 2025. "Inequality and the zero lower bound," Journal of Econometrics, Elsevier, vol. 249(PC).
    8. Li, Mingzhe, 2025. "A Theory of Portfolio Choice for Heterogeneous Investors," MPRA Paper 126642, University Library of Munich, Germany, revised 29 Oct 2025.
    9. Yves Achdou & Jiequn Han & Jean-Michel Lasry & Pierre-Louis Lions & Benjamin Moll, 2017. "Income and Wealth Distribution in Macroeconomics: A Continuous-Time Approach," NBER Working Papers 23732, National Bureau of Economic Research, Inc.
    10. Marlon Azinovic-Yang & Jan Zemlicka, 2025. "Deep Learning in the Sequence Space," CERGE-EI Working Papers wp802, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    11. Darougheh, Saman & Faccini, Renato & Melosi, Leonardo & Villa, Alessandro T., 2024. "On-the-Job Search and Inflation under the Microscope," The Warwick Economics Research Paper Series (TWERPS) 1536, University of Warwick, Department of Economics.
    12. Darracq Pariès, Matthieu & Notarpietro, Alessandro & Kilponen, Juha & Papadopoulou, Niki & Zimic, Srečko & Aldama, Pierre & Langenus, Geert & Alvarez, Luis Julian & Lemoine, Matthieu & Angelini, Elena, 2021. "Review of macroeconomic modelling in the Eurosystem: current practices and scope for improvement," Occasional Paper Series 267, European Central Bank.
    13. Francesco Ferlaino, 2024. "Does the financial accelerator accelerate inequalities?," Working Papers 538, University of Milano-Bicocca, Department of Economics.
    14. Feld, Lars P. & Schmidt, Christoph M. & Schnabel, Isabel & Truger, Achim & Wieland, Volker, 2019. "Den Strukturwandel meistern. Jahresgutachten 2019/20 [Dealing with Structural Change. Annual Report 2019/20]," Annual Economic Reports / Jahresgutachten, German Council of Economic Experts / Sachverständigenrat zur Begutachtung der gesamtwirtschaftlichen Entwicklung, volume 127, number 201920.
    15. Kase, Hanno & Melosi, Leonardo & Rottner, Matthias, 2022. "Estimating Nonlinear Heterogeneous Agents Models with Neural Networks," CEPR Discussion Papers 17391, C.E.P.R. Discussion Papers.
    16. Jesús Fernández‐Villaverde & Samuel Hurtado & Galo Nuño, 2023. "Financial Frictions and the Wealth Distribution," Econometrica, Econometric Society, vol. 91(3), pages 869-901, May.
    17. Alexandre Gaillard & Christian Hellwig & Philipp Wangner & Nicolas Werquin, 2023. "Consumption, Wealth, and Income Inequality: A Tale of Tails," Working Paper Series WP 2023-43, Federal Reserve Bank of Chicago.
    18. Andrew Lyasoff, 2023. "The Time-Interlaced Self-Consistent Master System of Heterogeneous-Agent Models," Papers 2303.12567, arXiv.org, revised May 2025.
    19. Zheng Gong, 2025. "When Does Household Heterogeneity Matter for Aggregate Fluctuations?," CRC TR 224 Discussion Paper Series crctr224_2025_624v2, University of Bonn and University of Mannheim, Germany, revised Sep 2025.
    20. Emmet Hall-Hoffarth, 2023. "Non-linear approximations of DSGE models with neural-networks and hard-constraints," Papers 2310.13436, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.20283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.