IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.16925.html

Approximate Least-Favorable Distributions and Nearly Optimal Tests via Stochastic Mirror Descent

Author

Listed:
  • Andr'es Aradillas Fern'andez
  • Jos'e Blanchet
  • Jos'e Luis Montiel Olea
  • Chen Qiu
  • Jorg Stoye
  • Lezhi Tan

Abstract

We consider a class of hypothesis testing problems where the null hypothesis postulates $M$ distributions for the observed data, and there is only one possible distribution under the alternative. We show that one can use a stochastic mirror descent routine for convex optimization to provably obtain - after finitely many iterations - both an approximate least-favorable distribution and a nearly optimal test, in a sense we make precise. Our theoretical results yield concrete recommendations about the algorithm's implementation, including its initial condition, its step size, and the number of iterations. Importantly, our suggested algorithm can be viewed as a slight variation of the algorithm suggested by Elliott, M\"uller, and Watson (2015), whose theoretical performance guarantees are unknown.

Suggested Citation

  • Andr'es Aradillas Fern'andez & Jos'e Blanchet & Jos'e Luis Montiel Olea & Chen Qiu & Jorg Stoye & Lezhi Tan, 2025. "Approximate Least-Favorable Distributions and Nearly Optimal Tests via Stochastic Mirror Descent," Papers 2511.16925, arXiv.org.
  • Handle: RePEc:arx:papers:2511.16925
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.16925
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, January.
    2. Moreira, Humberto Ataíde & Moreira, Marcelo J., 2013. "Contributions to the Theory of Optimal Tests," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 747, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    3. Patrik Guggenberger & Frank Kleibergen & Sophocles Mavroeidis, 2019. "A more powerful subvector Anderson Rubin test in linear instrumental variables regression," Quantitative Economics, Econometric Society, vol. 10(2), pages 487-526, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laurent Davezies & Xavier D'Haultfoeuille & Yannick Guyonvarch, 2019. "Empirical Process Results for Exchangeable Arrays," Papers 1906.11293, arXiv.org, revised May 2020.
    2. Shuang Liu, 2025. "Asymptotic Analysis of the Bias–Variance Trade-Off in Subsampling Metropolis–Hastings," Mathematics, MDPI, vol. 13(21), pages 1-30, October.
    3. Alexander Frankel & Maximilian Kasy, 2022. "Which Findings Should Be Published?," American Economic Journal: Microeconomics, American Economic Association, vol. 14(1), pages 1-38, February.
    4. Kasy, Maximilian, 2011. "A nonparametric test for path dependence in discrete panel data," Economics Letters, Elsevier, vol. 113(2), pages 172-175.
    5. Luofeng Liao & Christian Kroer, 2024. "Statistical Inference and A/B Testing in Fisher Markets and Paced Auctions," Papers 2406.15522, arXiv.org, revised Mar 2025.
    6. Xu Cheng & Winston Wei Dou & Zhipeng Liao, 2022. "Macro‐Finance Decoupling: Robust Evaluations of Macro Asset Pricing Models," Econometrica, Econometric Society, vol. 90(2), pages 685-713, March.
    7. Waverly Wei & Maya Petersen & Mark J van der Laan & Zeyu Zheng & Chong Wu & Jingshen Wang, 2023. "Efficient targeted learning of heterogeneous treatment effects for multiple subgroups," Biometrics, The International Biometric Society, vol. 79(3), pages 1934-1946, September.
    8. Yao, Haixiang & Huang, Jinbo & Li, Yong & Humphrey, Jacquelyn E., 2021. "A general approach to smooth and convex portfolio optimization using lower partial moments," Journal of Banking & Finance, Elsevier, vol. 129(C).
    9. Jan-Lukas Wermuth, 2025. "Proper Correlation Coefficients for Nominal Random Variables," LIS Working papers 897, LIS Cross-National Data Center in Luxembourg.
    10. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    11. Ayden Higgins & Koen Jochmans, 2024. "Bootstrap Inference for Fixed‐Effect Models," Econometrica, Econometric Society, vol. 92(2), pages 411-427, March.
    12. Ashesh Rambachan & Jonathan Roth, 2020. "Design-Based Uncertainty for Quasi-Experiments," Papers 2008.00602, arXiv.org, revised Jun 2025.
    13. Li, J. & Nott, D.J. & Fan, Y. & Sisson, S.A., 2017. "Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 77-89.
    14. Higgins, Ayden & Jochmans, Koen, 2025. "Inference in Dynamic Models for Panel Data Using The Moving Block Bootstrap," TSE Working Papers 25-1620, Toulouse School of Economics (TSE).
    15. Denis Koshelev & Alexey Ponomarenko & Sergei Seleznev, 2023. "Amortized neural networks for agent-based model forecasting," Papers 2308.05753, arXiv.org.
    16. Debashis Ghosh, 2004. "Semiparametric methods for the binormal model with multiple biomarkers," The University of Michigan Department of Biostatistics Working Paper Series 1046, Berkeley Electronic Press.
    17. Isaiah Andrews & Timothy B. Armstrong, 2017. "Unbiased instrumental variables estimation under known first‐stage sign," Quantitative Economics, Econometric Society, vol. 8(2), pages 479-503, July.
    18. Donald W. K. Andrews & Patrik Guggenberger, 2015. "Identification- and Singularity-Robust Inference for Moment Condition," Cowles Foundation Discussion Papers 1978R2, Cowles Foundation for Research in Economics, Yale University, revised Jan 2019.
    19. Yao Luo & Peijun Sang, 2022. "Efficient Estimation of Structural Models via Sieves," Papers 2204.13488, arXiv.org, revised Feb 2025.
    20. Brian D. Williamson & Peter B. Gilbert & Marco Carone & Noah Simon, 2021. "Nonparametric variable importance assessment using machine learning techniques," Biometrics, The International Biometric Society, vol. 77(1), pages 9-22, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.16925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.