IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.14408.html

The Hidden Constant of Market Rhythms: How $1-1/e$ Defines Scaling in Intrinsic Time

Author

Listed:
  • Thomas Houweling

Abstract

Directional-change Intrinsic Time analysis has long revealed scaling laws in market microstructure, but the origin of their stability remains elusive. This article presents evidence that Intrinsic Time can be modeled as a memoryless exponential hazard process. Empirically, the proportion of directional changes to total events stabilizes near $1 - 1/e = 0.632$, matching the probability that a Poisson process completes one mean interval. This constant provides a natural heuristic to identify scaling regimes across thresholds and supports an interpretation of market activity as a renewal process in intrinsic time.

Suggested Citation

  • Thomas Houweling, 2025. "The Hidden Constant of Market Rhythms: How $1-1/e$ Defines Scaling in Intrinsic Time," Papers 2511.14408, arXiv.org.
  • Handle: RePEc:arx:papers:2511.14408
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.14408
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Junjun & Xiong, Xiong & He, Feng & Zhang, Wei, 2017. "Volatility measurement with directional change in Chinese stock market: Statistical property and investment strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 169-180.
    2. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    3. V. Petrov & A. Golub & R. Olsen, 2020. "Agent-based modelling in directional-change intrinsic time," Quantitative Finance, Taylor & Francis Journals, vol. 20(3), pages 463-482, March.
    4. Vladimir Petrov & Anton Golub & Richard Olsen, 2019. "Instantaneous Volatility Seasonality of High-Frequency Markets in Directional-Change Intrinsic Time," JRFM, MDPI, vol. 12(2), pages 1-31, April.
    5. James B. Glattfelder & Thomas Houweling & Richard B. Olsen, 2025. "A Modern Paradigm for Algorithmic Trading," Papers 2501.06032, arXiv.org.
    6. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:kap:iaecre:v:14:y:2008:i:1:p:112-124 is not listed on IDEAS
    2. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    3. Kalnina, Ilze & Linton, Oliver, 2006. "Estimating quadratic variation consistently in the presence of correlated measurement error," LSE Research Online Documents on Economics 4413, London School of Economics and Political Science, LSE Library.
    4. Zheng, Tingguo & Xiao, Han & Chen, Rong, 2015. "Generalized ARMA models with martingale difference errors," Journal of Econometrics, Elsevier, vol. 189(2), pages 492-506.
    5. Liao, Yin, 2013. "The benefit of modeling jumps in realized volatility for risk prediction: Evidence from Chinese mainland stocks," Pacific-Basin Finance Journal, Elsevier, vol. 23(C), pages 25-48.
    6. Chen, Fei & Diebold, Francis X. & Schorfheide, Frank, 2013. "A Markov-switching multifractal inter-trade duration model, with application to US equities," Journal of Econometrics, Elsevier, vol. 177(2), pages 320-342.
    7. Shengnan Li & Edward P. K. Tsang & John O'Hara, 2022. "Measuring relative volatility in high‐frequency data under the directional change approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(2), pages 86-102, April.
    8. Aknouche, Abdelhakim & Francq, Christian, 2023. "Two-stage weighted least squares estimator of the conditional mean of observation-driven time series models," Journal of Econometrics, Elsevier, vol. 237(2).
    9. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
    10. Ao, Han & Li, Munan, 2024. "Exploiting the potential of a directional changes-based trading algorithm in the stock market," Finance Research Letters, Elsevier, vol. 60(C).
    11. Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011. "A reduced form framework for modeling volatility of speculative prices based on realized variation measures," Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
    12. De Luca Giovanni & Gallo Giampiero M., 2004. "Mixture Processes for Financial Intradaily Durations," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-20, May.
    13. Peter C. B. Phillips & Jun Yu, 2024. "Information loss in volatility measurement with flat price trading," Advanced Studies in Theoretical and Applied Econometrics, in: Subal C. Kumbhakar & Robin C. Sickles & Hung-Jen Wang (ed.), Advances in Applied Econometrics, pages 501-543, Springer.
    14. Yin Liao, 2012. "Does Modeling Jumps Help? A Comparison of Realized Volatility Models for Risk Prediction," CAMA Working Papers 2012-26, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    15. Tingguo Zheng & Han Xiao & Rong Chen, 2022. "Generalized autoregressive moving average models with GARCH errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 125-146, January.
    16. Yongdeng Xu, 2025. "The exponential HEAVY model: an improved approach to volatility modeling and forecasting," Review of Quantitative Finance and Accounting, Springer, vol. 65(2), pages 727-748, August.
    17. Gloria González-Rivera & Tae-Hwy Lee, 2007. "Nonlinear Time Series in Financial Forecasting," Working Papers 200803, University of California at Riverside, Department of Economics, revised Feb 2008.
    18. Helmut Herwartz, 2006. "Econometric analysis of high frequency data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 89-104, March.
    19. Ilze Kalnina & Oliver Linton, 2006. "Estimating Quadratic VariationConsistently in thePresence of Correlated MeasurementError," STICERD - Econometrics Paper Series 509, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    20. James B. Glattfelder & Anton Golub, 2022. "Bridging the Gap: Decoding the Intrinsic Nature of Time in Market Data," Papers 2204.02682, arXiv.org.
    21. Abdelhakim Aknouche & Bader Almohaimeed & Stefanos Dimitrakopoulos, 2022. "Periodic autoregressive conditional duration," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 5-29, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.14408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.