IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.12640.html
   My bibliography  Save this paper

Double machine learning for causal inference in a multivariate sample selection model

Author

Listed:
  • Sofiia Dolgikh
  • Bodan Potanin

Abstract

We propose plug-in (PI) and double machine learning (DML) estimators of average treatment effect (ATE), average treatment effect on the treated (ATET) and local average treatment effect (LATE) in the multivariate sample selection model with ordinal selection equations. Our DML estimators are doubly-robust and based on the efficient influence functions. Finite sample properties of the proposed estimators are studied and compared on simulated data. Specifically, the results of the analysis suggest that without addressing multivariate sample selection, the estimates of the causal parameters may be highly biased. However, the proposed estimators allow us to avoid these biases.

Suggested Citation

  • Sofiia Dolgikh & Bodan Potanin, 2025. "Double machine learning for causal inference in a multivariate sample selection model," Papers 2511.12640, arXiv.org.
  • Handle: RePEc:arx:papers:2511.12640
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.12640
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.12640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.