Trading with the Devil: Risk and Return in Foundation Model Strategies
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hoogerheide, Lennart & van Dijk, Herman K., 2010.
"Bayesian forecasting of Value at Risk and Expected Shortfall using adaptive importance sampling,"
International Journal of Forecasting, Elsevier, vol. 26(2), pages 231-247, April.
- Lennart Hoogerheide & Herman K. van Dijk, 2008. "Bayesian Forecasting of Value at Risk and Expected Shortfall using Adaptive Importance Sampling," Tinbergen Institute Discussion Papers 08-092/4, Tinbergen Institute.
- Danielsson, Jon & James, Kevin R. & Valenzuela, Marcela & Zer, Ilknur, 2016.
"Model risk of risk models,"
Journal of Financial Stability, Elsevier, vol. 23(C), pages 79-91.
- Danielsson, Jon & James, Kevin R. & Valenzuela, Marcela & Zer, Ilknur, 2014. "Model risk of risk models," LSE Research Online Documents on Economics 59296, London School of Economics and Political Science, LSE Library.
- Danielsson, Jon & James, Kevin R. & Valenzuela, Marcela & Zer, Ilknur, 2016. "Model risk of risk models," LSE Research Online Documents on Economics 66365, London School of Economics and Political Science, LSE Library.
- Jón Daníelsson & Kevin James & Marcela Valenzuela & Ilknur Zer, 2014. "Model Risk of Risk Models," Finance and Economics Discussion Series 2014-34, Board of Governors of the Federal Reserve System (U.S.).
- Shijie Wu & Ozan Irsoy & Steven Lu & Vadim Dabravolski & Mark Dredze & Sebastian Gehrmann & Prabhanjan Kambadur & David Rosenberg & Gideon Mann, 2023. "BloombergGPT: A Large Language Model for Finance," Papers 2303.17564, arXiv.org, revised Dec 2023.
- Jeremy Berkowitz & Peter Christoffersen & Denis Pelletier, 2011.
"Evaluating Value-at-Risk Models with Desk-Level Data,"
Management Science, INFORMS, vol. 57(12), pages 2213-2227, December.
- Jeremy Berkowitz & Peter Christoffersen & Denis Pelletier, 2005. "Evaluating Value-at-Risk models with desk-level data," Working Paper Series 010, North Carolina State University, Department of Economics, revised Dec 2006.
- Peter Christoffersen & Jeremy Berkowitz & Denis Pelletier, 2008. "Evaluating Value-at-Risk Models with Desk-Level Data," CREATES Research Papers 2009-35, Department of Economics and Business Economics, Aarhus University.
- Shuo Sun & Rundong Wang & Bo An, 2022. "Quantitative Stock Investment by Routing Uncertainty-Aware Trading Experts: A Multi-Task Learning Approach," Papers 2207.07578, arXiv.org.
- Wolfgang Aussenegg & Tatiana Miazhynskaia, 2006. "Uncertainty in Value-at-risk Estimates under Parametric and Non-parametric Modeling," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(3), pages 243-264, September.
- Carlo Acerbi & Dirk Tasche, 2002.
"Expected Shortfall: A Natural Coherent Alternative to Value at Risk,"
Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
- Carlo Acerbi & Dirk Tasche, 2001. "Expected Shortfall: a natural coherent alternative to Value at Risk," Papers cond-mat/0105191, arXiv.org.
- Eugene F. Fama & Kenneth R. French, 2004. "The Capital Asset Pricing Model: Theory and Evidence," Journal of Economic Perspectives, American Economic Association, vol. 18(3), pages 25-46, Summer.
- Mohammad El Hajj & Jamil Hammoud, 2023. "Unveiling the Influence of Artificial Intelligence and Machine Learning on Financial Markets: A Comprehensive Analysis of AI Applications in Trading, Risk Management, and Financial Operations," JRFM, MDPI, vol. 16(10), pages 1-16, October.
- Aven, Terje, 2016. "Risk assessment and risk management: Review of recent advances on their foundation," European Journal of Operational Research, Elsevier, vol. 253(1), pages 1-13.
- Filippo Curti & Ibrahim Ergen & Minh Le & Marco Migueis & Rob T. Stewart, 2016. "Benchmarking Operational Risk Models," Finance and Economics Discussion Series 2016-070, Board of Governors of the Federal Reserve System (U.S.).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Denisa Banulescu-Radu & Christophe Hurlin & Jérémy Leymarie & Olivier Scaillet, 2021.
"Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures,"
Management Science, INFORMS, vol. 67(9), pages 5730-5754, September.
- Denisa Banulescu & Christophe Hurlin & Jeremy Leymarie & O. Scaillet, 2019. "Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures," Swiss Finance Institute Research Paper Series 19-48, Swiss Finance Institute.
- Denisa Banulescu & Christophe Hurlin & Jeremy Leymarie & Olivier Scaillet, 2020. "Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures," Working Papers halshs-03088668, HAL.
- Denisa Banulescu-Radu & Christophe Hurlin & Jérémy Leymarie & Olivier Scaillet, 2021. "Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures," Post-Print hal-03526444, HAL.
- Banulescu-Radu, Denisa & Hurlin, Christophe & Leymarie, Jeremy & Scaillet, Olivier, 2020. "Backtesting marginal expected shortfalland related systemic risk measures," Working Papers unige:134136, University of Geneva, Geneva School of Economics and Management.
- Tasneem Bani-Mustafa & Nicola Pedroni & Enrico Zio & Dominique Vasseur & Francois Beaudouin, 2020. "A hierarchical tree-based decision-making approach for assessing the relative trustworthiness of risk assessment models," Journal of Risk and Reliability, , vol. 234(6), pages 748-763, December.
- Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
- Lazar, Emese & Zhang, Ning, 2019.
"Model risk of expected shortfall,"
Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
- Emese Lazar & Ning Zhang, 2017. "Model Risk of Expected Shortfall," ICMA Centre Discussion Papers in Finance icma-dp2017-10, Henley Business School, University of Reading.
- Rosa Ferrentino & Luca Vota, 2022. "A Mathematical Model for the Pricing of Derivative Financial Products: the Role of the Banking Supervision and of the Model Risk," Journal of Finance and Investment Analysis, SCIENPRESS Ltd, vol. 11(1), pages 1-2.
- Fernández-Aguado, Pilar Gómez & Martínez, Eduardo Trigo & Ruíz, Rafael Moreno & Ureña, Antonio Partal, 2022. "Evaluation of European Deposit Insurance Scheme funding based on risk analysis," International Review of Economics & Finance, Elsevier, vol. 78(C), pages 234-247.
- Václav Brož & Lukáš Pfeifer, 2021.
"Are risk weights of banks in the Czech Republic procyclical? Evidence from wavelet analysis,"
Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 10(1), pages 113-139.
- Vaclav Broz & Lukas Pfeifer & Dominika Kolcunova, 2017. "Are the Risk Weights of Banks in the Czech Republic Procyclical? Evidence from Wavelet Analysis," Working Papers 2017/15, Czech National Bank, Research and Statistics Department.
- Pfeifer, Lukáš & Hodula, Martin, 2021. "A profit-to-provisioning approach to setting the countercyclical capital buffer," Economic Systems, Elsevier, vol. 45(1).
- Boucher, Christophe M. & Daníelsson, Jón & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014.
"Risk models-at-risk,"
Journal of Banking & Finance, Elsevier, vol. 44(C), pages 72-92.
- Christophe Boucher & Jon Danielsson & Patrick Kouontchou & Bertrand Maillet, 2014. "Risk Model-at-Risk," Post-Print hal-01386003, HAL.
- Christophe Boucher & Jón Daníelsson & Patrick Kouontchou & Bertrand Maillet, 2014. "Risk models-at-risk," Post-Print hal-01243413, HAL.
- Boucher, Christophe M. & Danielsson, Jon & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014. "Risk models–at–risk," LSE Research Online Documents on Economics 59299, London School of Economics and Political Science, LSE Library.
- Mehmet Sahiner & David G. McMillan & Dimos Kambouroudis, 2023. "Do artificial neural networks provide improved volatility forecasts: Evidence from Asian markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 47(3), pages 723-762, September.
- Li, Dan & Clements, Adam & Drovandi, Christopher, 2023. "A Bayesian approach for more reliable tail risk forecasts," Journal of Financial Stability, Elsevier, vol. 64(C).
- Marina Brogi & Valentina Lagasio & Luca Riccetti, 2021. "Systemic risk measurement: bucketing global systemically important banks," Annals of Finance, Springer, vol. 17(3), pages 319-351, September.
- Zhang, Ning & Gong, Yujing & Xue, Xiaohan, 2023. "Less disagreement, better forecasts: adjusted risk measures in the energy futures market," LSE Research Online Documents on Economics 118451, London School of Economics and Political Science, LSE Library.
- James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
- Mohammed Berkhouch & Fernanda Maria Müller & Ghizlane Lakhnati & Marcelo Brutti Righi, 2022. "Deviation-Based Model Risk Measures," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 527-547, February.
- Peter Grundke & Kamil Pliszka & Michael Tuchscherer, 2020.
"Model and estimation risk in credit risk stress tests,"
Review of Quantitative Finance and Accounting, Springer, vol. 55(1), pages 163-199, July.
- Grundke, Peter & Pliszka, Kamil & Tuchscherer, Michael, 2019. "Model and estimation risk in credit risk stress tests," Discussion Papers 09/2019, Deutsche Bundesbank.
- Seyed Mohammad Sina Seyfi & Azin Sharifi & Hamidreza Arian, 2020. "Portfolio Risk Measurement Using a Mixture Simulation Approach," Papers 2011.07994, arXiv.org.
- Millossovich, Pietro & Tsanakas, Andreas & Wang, Ruodu, 2024. "A theory of multivariate stress testing," European Journal of Operational Research, Elsevier, vol. 318(3), pages 851-866.
- David Murphy & Nicholas Vause, 2021. "A CBA of APC: analysing approaches to procyclicality reduction in CCP initial margin models," Bank of England working papers 950, Bank of England.
- Dridi, Ichrak & Boughrara, Adel, 2021. "On the effect of full-fledged IT adoption on stock returns and their conditional volatility: Evidence from propensity score matching," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 179-194.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-AIN-2025-11-03 (Artificial Intelligence)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.17165. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/arx/papers/2510.17165.html