IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/118451.html
   My bibliography  Save this paper

Less disagreement, better forecasts: adjusted risk measures in the energy futures market

Author

Listed:
  • Zhang, Ning
  • Gong, Yujing
  • Xue, Xiaohan

Abstract

This paper develops a generic adjustment framework to improve in the market risk forecasts of diverse risk forecasting models, which indicates the degree to which risk is under- and overestimated. In the context of the energy commodity market, a market in which tail risk management is of crucial importance, the empirical analysis shows that after this adjustment framework is applied, the forecasting performance of various risk models generally improves, as verified by a battery of backtesting methods. Additionally, our method also lessens the risk model disagreement among post-adjusted risk forecasts.

Suggested Citation

  • Zhang, Ning & Gong, Yujing & Xue, Xiaohan, 2023. "Less disagreement, better forecasts: adjusted risk measures in the energy futures market," LSE Research Online Documents on Economics 118451, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:118451
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/118451/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    2. Danielsson, Jon & James, Kevin R. & Valenzuela, Marcela & Zer, Ilknur, 2016. "Model risk of risk models," Journal of Financial Stability, Elsevier, vol. 23(C), pages 79-91.
    3. Gurdip Bakshi & Xiaohui Gao & Alberto G. Rossi, 2019. "Understanding the Sources of Risk Underlying the Cross Section of Commodity Returns," Management Science, INFORMS, vol. 65(2), pages 619-641, February.
    4. František Čech & Jozef Baruník, 2019. "Panel quantile regressions for estimating and predicting the value‐at‐risk of commodities," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(9), pages 1167-1189, September.
    5. Yang-Ho Park & Nicole Abruzzo, 2016. "An Empirical Analysis of Futures Margin Changes: Determinants and Policy Implications," Journal of Financial Services Research, Springer;Western Finance Association, vol. 49(1), pages 65-100, February.
    6. Susanne Emmer & Marie Kratz & Dirk Tasche, 2013. "What is the best risk measure in practice? A comparison of standard measures," Papers 1312.1645, arXiv.org, revised Apr 2015.
    7. Filippo Curti & Ibrahim Ergen & Minh Le & Marco Migueis & Rob T. Stewart, 2016. "Benchmarking Operational Risk Models," Finance and Economics Discussion Series 2016-070, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ning Zhang & Yujing Gong & Xiaohan Xue, 2023. "Less disagreement, better forecasts: Adjusted risk measures in the energy futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(10), pages 1332-1372, October.
    2. Mohammed Berkhouch & Fernanda Maria Müller & Ghizlane Lakhnati & Marcelo Brutti Righi, 2022. "Deviation-Based Model Risk Measures," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 527-547, February.
    3. C. Alexander & M. Coulon & Y. Han & X. Meng, 2024. "Evaluating the discrimination ability of proper multi-variate scoring rules," Annals of Operations Research, Springer, vol. 334(1), pages 857-883, March.
    4. Laura Garcia-Jorcano & Lidia Sanchis-Marco, 2023. "Measuring Systemic Risk Using Multivariate Quantile-Located ES Models," Journal of Financial Econometrics, Oxford University Press, vol. 21(1), pages 1-72.
    5. Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2023. "The commodity risk premium and neural networks," Journal of Empirical Finance, Elsevier, vol. 74(C).
    6. Rosa Ferrentino & Luca Vota, 2022. "A Mathematical Model for the Pricing of Derivative Financial Products: the Role of the Banking Supervision and of the Model Risk," Journal of Finance and Investment Analysis, SCIENPRESS Ltd, vol. 11(1), pages 1-2.
    7. Fernández-Aguado, Pilar Gómez & Martínez, Eduardo Trigo & Ruíz, Rafael Moreno & Ureña, Antonio Partal, 2022. "Evaluation of European Deposit Insurance Scheme funding based on risk analysis," International Review of Economics & Finance, Elsevier, vol. 78(C), pages 234-247.
    8. Pitera, Marcin & Schmidt, Thorsten, 2018. "Unbiased estimation of risk," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 133-145.
    9. Václav Brož & Lukáš Pfeifer, 2021. "Are risk weights of banks in the Czech Republic procyclical? Evidence from wavelet analysis," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 10(1), pages 113-139.
    10. Marina Brogi & Valentina Lagasio & Luca Riccetti, 2021. "Systemic risk measurement: bucketing global systemically important banks," Annals of Finance, Springer, vol. 17(3), pages 319-351, September.
    11. Enrique Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2021. "Backtesting expected shortfall for world stock index ETFs with extreme value theory and Gram–Charlier mixtures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4163-4189, July.
    12. Seyed Mohammad Sina Seyfi & Azin Sharifi & Hamidreza Arian, 2020. "Portfolio Risk Measurement Using a Mixture Simulation Approach," Papers 2011.07994, arXiv.org.
    13. Federico Gatta & Fabrizio Lillo & Piero Mazzarisi, 2024. "CAESar: Conditional Autoregressive Expected Shortfall," Papers 2407.06619, arXiv.org.
    14. Dridi, Ichrak & Boughrara, Adel, 2021. "On the effect of full-fledged IT adoption on stock returns and their conditional volatility: Evidence from propensity score matching," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 179-194.
    15. Righi, Marcelo Brutti & Müller, Fernanda Maria & Moresco, Marlon Ruoso, 2020. "On a robust risk measurement approach for capital determination errors minimization," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 199-211.
    16. Farkas, Walter & Fringuellotti, Fulvia & Tunaru, Radu, 2020. "A cost-benefit analysis of capital requirements adjusted for model risk," Journal of Corporate Finance, Elsevier, vol. 65(C).
    17. Tobias Fissler & Johanna F. Ziegel, 2019. "Evaluating Range Value at Risk Forecasts," Papers 1902.04489, arXiv.org, revised Nov 2020.
    18. Dai, Yun-Shi & Dai, Peng-Fei & Zhou, Wei-Xing, 2023. "Tail dependence structure and extreme risk spillover effects between the international agricultural futures and spot markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    19. Malgorzata Mikita, 2022. "The Interrelationship Among Efficiency and Concentration of Banking System and its Stability: Evidence from Poland," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 670-689.
    20. Gourieroux, Christian & Tiomo, Andre, 2019. "The Evaluation of Model Risk for Probability of Default and Expected Loss," MPRA Paper 95795, University Library of Munich, Germany.

    More about this item

    Keywords

    energy futures; expected shortfall; finance; model disagreement; value at risk;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:118451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.