IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.16503.html
   My bibliography  Save this paper

Sentiment and Volatility in Financial Markets: A Review of BERT and GARCH Applications during Geopolitical Crises

Author

Listed:
  • Domenica Mino
  • Cillian Williamson

Abstract

Artificial intelligence techniques have increasingly been applied to understand the complex relationship between public sentiment and financial market behaviour. This study explores the relationship between the sentiment of news related to the Russia-Ukraine war and the volatility of the stock market. A comprehensive dataset of news articles from major US platforms, published between January 1 and July 17, 2024, was analysed using a fine-tuned Bidirectional Encoder Representations from Transformers (BERT) model adapted for financial language. We extracted sentiment scores and applied a Generalised Autoregressive Conditional Heteroscedasticity (GARCH) model, enhanced with a Student-t distribution to capture the heavy-tailed nature of financial returns data. The results reveal a statistically significant negative relationship between negative news sentiment and market stability, suggesting that pessimistic war coverage is associated with increased volatility in the S&P 500 index. This research demonstrates how artificial intelligence and natural language processing can be integrated with econometric modelling to assess real-time market dynamics, offering valuable tools for financial risk analysis during geopolitical crises.

Suggested Citation

  • Domenica Mino & Cillian Williamson, 2025. "Sentiment and Volatility in Financial Markets: A Review of BERT and GARCH Applications during Geopolitical Crises," Papers 2510.16503, arXiv.org.
  • Handle: RePEc:arx:papers:2510.16503
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.16503
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Drakos, Konstantinos, 2010. "Terrorism activity, investor sentiment, and stock returns," Review of Financial Economics, Elsevier, vol. 19(3), pages 128-135, August.
    2. Aaryan Gupta & Vinya Dengre & Hamza Abubakar Kheruwala & Manan Shah, 2020. "Comprehensive review of text-mining applications in finance," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-25, December.
    3. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    4. Han Lin Shang & Yang Yang & Fearghal Kearney, 2019. "Intraday forecasts of a volatility index: functional time series methods with dynamic updating," Annals of Operations Research, Springer, vol. 282(1), pages 331-354, November.
    5. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    6. Smales, Lee A., 2014. "News sentiment and the investor fear gauge," Finance Research Letters, Elsevier, vol. 11(2), pages 122-130.
    7. Kenneth R. Ahern & Denis Sosyura, 2014. "Who Writes the News? Corporate Press Releases during Merger Negotiations," Journal of Finance, American Finance Association, vol. 69(1), pages 241-291, February.
    8. Banerjee, Ameet Kumar & Sensoy, Ahmet & Goodell, John W., 2024. "Volatility connectedness between geopolitical risk and financial markets: Insights from pandemic and military crisis periods," International Review of Economics & Finance, Elsevier, vol. 96(PC).
    9. Nicholas Bloom, 2009. "The Impact of Uncertainty Shocks," Econometrica, Econometric Society, vol. 77(3), pages 623-685, May.
    10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    11. Schmeling, Maik, 2009. "Investor sentiment and stock returns: Some international evidence," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 394-408, June.
    12. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    13. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    14. Malcolm Baker & Jeffrey Wurgler, 2007. "Investor Sentiment in the Stock Market," Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 129-152, Spring.
    15. Yilmazkuday, Hakan, 2024. "Geopolitical risk and stock prices," European Journal of Political Economy, Elsevier, vol. 83(C).
    16. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    17. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    18. Joseph E. Engelberg & Christopher A. Parsons, 2011. "The Causal Impact of Media in Financial Markets," Journal of Finance, American Finance Association, vol. 66(1), pages 67-97, February.
    19. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avramov, Doron & Li, Minwen & Wang, Hao, 2021. "Predicting corporate policies using downside risk: A machine learning approach," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 1-26.
    2. Yen-Ju Hsu & Yang-Cheng Lu & J. Jimmy Yang, 2021. "News sentiment and stock market volatility," Review of Quantitative Finance and Accounting, Springer, vol. 57(3), pages 1093-1122, October.
    3. Tom Marty & Bruce Vanstone & Tobias Hahn, 2020. "News media analytics in finance: a survey," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(2), pages 1385-1434, June.
    4. Shunyao Wang & Ming Cheng & Christina Dan Wang, 2025. "NewsNet-SDF: Stochastic Discount Factor Estimation with Pretrained Language Model News Embeddings via Adversarial Networks," Papers 2505.06864, arXiv.org.
    5. Liao, Rose & Wang, Xinjie & Wu, Ge, 2021. "The role of media in mergers and acquisitions," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    6. Zongwu Cai & Pixiong Chen, 2022. "New Online Investor Sentiment and Asset Returns," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202216, University of Kansas, Department of Economics, revised Nov 2022.
    7. Lansing, Kevin J. & LeRoy, Stephen F. & Ma, Jun, 2022. "Examining the sources of excess return predictability: Stochastic volatility or market inefficiency?," Journal of Economic Behavior & Organization, Elsevier, vol. 197(C), pages 50-72.
    8. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    9. Wang, Wenzhao, 2018. "Investor sentiment and the mean-variance relationship: European evidence," Research in International Business and Finance, Elsevier, vol. 46(C), pages 227-239.
    10. Freire, Gustavo, 2021. "Tail risk and investors’ concerns: Evidence from Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    11. Keunbae Ahn, 2021. "Predictable Fluctuations in the Cross-Section and Time-Series of Asset Prices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2021, January-A.
    12. Baur, Dirk G. & Smales, Lee A., 2020. "Hedging geopolitical risk with precious metals," Journal of Banking & Finance, Elsevier, vol. 117(C).
    13. Siganos, Antonios & Vagenas-Nanos, Evangelos & Verwijmeren, Patrick, 2014. "Facebook's daily sentiment and international stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 730-743.
    14. Lutz, Chandler, 2015. "The impact of conventional and unconventional monetary policy on investor sentiment," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 89-105.
    15. Matthias M M Buehlmaier & Josef Zechner, 2021. "Financial Media, Price Discovery, and Merger Arbitrage [Who writes the news? Corporate press releases during merger negotiations]," Review of Finance, European Finance Association, vol. 25(4), pages 997-1046.
    16. Ahmad, Khurshid & Han, JingGuang & Hutson, Elaine & Kearney, Colm & Liu, Sha, 2016. "Media-expressed negative tone and firm-level stock returns," Journal of Corporate Finance, Elsevier, vol. 37(C), pages 152-172.
    17. Francisco Peñaranda & Enrique Sentana, 2024. "Portfolio management with big data," Working Papers wp2024_2411, CEMFI.
    18. Obaid, Khaled & Pukthuanthong, Kuntara, 2022. "A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news," Journal of Financial Economics, Elsevier, vol. 144(1), pages 273-297.
    19. Gaoshan Wang & Guangjin Yu & Xiaohong Shen, 2020. "The Effect of Online Investor Sentiment on Stock Movements: An LSTM Approach," Complexity, Hindawi, vol. 2020, pages 1-11, December.
    20. Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.16503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.