Author
Listed:
- Natalie Collina
- Surbhi Goel
- Aaron Roth
- Emily Ryu
- Mirah Shi
Abstract
Aligning AI systems with human values remains a fundamental challenge, but does our inability to create perfectly aligned models preclude obtaining the benefits of alignment? We study a strategic setting where a human user interacts with multiple differently misaligned AI agents, none of which are individually well-aligned. Our key insight is that when the users utility lies approximately within the convex hull of the agents utilities, a condition that becomes easier to satisfy as model diversity increases, strategic competition can yield outcomes comparable to interacting with a perfectly aligned model. We model this as a multi-leader Stackelberg game, extending Bayesian persuasion to multi-round conversations between differently informed parties, and prove three results: (1) when perfect alignment would allow the user to learn her Bayes-optimal action, she can also do so in all equilibria under the convex hull condition (2) under weaker assumptions requiring only approximate utility learning, a non-strategic user employing quantal response achieves near-optimal utility in all equilibria and (3) when the user selects the best single AI after an evaluation period, equilibrium guarantees remain near-optimal without further distributional assumptions. We complement the theory with two sets of experiments.
Suggested Citation
Natalie Collina & Surbhi Goel & Aaron Roth & Emily Ryu & Mirah Shi, 2025.
"Emergent Alignment via Competition,"
Papers
2509.15090, arXiv.org.
Handle:
RePEc:arx:papers:2509.15090
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.15090. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.