Equity Premium Prediction: Taking into Account the Role of Long, even Asymmetric, Swings in Stock Market Behavior
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ivo Welch & Amit Goyal, 2008.
"A Comprehensive Look at The Empirical Performance of Equity Premium Prediction,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
- Amit Goyal & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," Yale School of Management Working Papers amz2412, Yale School of Management, revised 01 Jan 2006.
- Amit Goyal & Ivo Welch & Athanasse Zafirov, 2021. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II," Swiss Finance Institute Research Paper Series 21-85, Swiss Finance Institute.
- Amit Goval & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," NBER Working Papers 10483, National Bureau of Economic Research, Inc.
- Ren, Yu & Tu, Yundong & Yi, Yanping, 2019. "Balanced predictive regressions," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 118-142.
- Ferreira, Miguel A. & Santa-Clara, Pedro, 2011.
"Forecasting stock market returns: The sum of the parts is more than the whole,"
Journal of Financial Economics, Elsevier, vol. 100(3), pages 514-537, June.
- Miguel A. Ferreira & Pedro Santa-Clara, 2008. "Forecasting Stock Market Returns: The Sum of the Parts is More than the Whole," NBER Working Papers 14571, National Bureau of Economic Research, Inc.
- Horta, Paulo & Lagoa, Sérgio & Martins, Luís, 2014. "The impact of the 2008 and 2010 financial crises on the Hurst exponents of international stock markets: Implications for efficiency and contagion," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 140-153.
- Jonathan A. Batten & Cetin Ciner & Brian M. Lucey & Peter G. Szilagyi, 2013. "The structure of gold and silver spread returns," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 561-570, March.
- Gündüz, Güngör & Kuzucuoğlu, Mahmut & Gündüz, Yalın, 2022. "Entropic characterization of Gross Domestic Product per capita (GDP) values of countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
- John Y. Campbell & Samuel B. Thompson, 2008.
"Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
- Campbell, John & Thompson, Samuel P., 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Scholarly Articles 2622619, Harvard University Department of Economics.
- Tetsuya Takaishi, 2017. "Statistical properties and multifractality of Bitcoin," Papers 1707.07618, arXiv.org, revised May 2018.
- Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
- Grech, D & Mazur, Z, 2004. "Can one make any crash prediction in finance using the local Hurst exponent idea?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 133-145.
- Laurent Calvet & Adlai Fisher, 2002.
"Multifractality In Asset Returns: Theory And Evidence,"
The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 381-406, August.
- Laurent-Emmanuel Calvet & Adlai J. Fisher, 2002. "Multifractality in Asset Returns: Theory and Evidence," Post-Print hal-00478175, HAL.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014.
"Forecasting the Equity Risk Premium: The Role of Technical Indicators,"
Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2010. "Out-of-sample equity premium prediction: economic fundamentals vs. moving-average rules," Working Papers 2010-008, Federal Reserve Bank of St. Louis.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2011. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Working Papers CoFie-02-2011, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Auer, Benjamin R., 2016. "On the performance of simple trading rules derived from the fractal dynamics of gold and silver price fluctuations," Finance Research Letters, Elsevier, vol. 16(C), pages 255-267.
- Maria Pia Beccar Varela & Francis Biney & Ionut Florescu, 2015. "Long correlations and fractional difference analysis applied to the study of memory effects in high-frequency (tick) data," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1365-1374, August.
- Franck Jovanovic, 2018. "A comparison between qualitative and quantitative histories: the example of the efficient market hypothesis," Post-Print hal-03557742, HAL.
- Eom, Cheoljun & Choi, Sunghoon & Oh, Gabjin & Jung, Woo-Sung, 2008. "Hurst exponent and prediction based on weak-form efficient market hypothesis of stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(18), pages 4630-4636.
- Barunik, Jozef & Kristoufek, Ladislav, 2010.
"On Hurst exponent estimation under heavy-tailed distributions,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
- Jozef Barunik & Ladislav Kristoufek, 2012. "On Hurst exponent estimation under heavy-tailed distributions," Papers 1201.4786, arXiv.org.
- Whitney Newey & Kenneth West, 2014.
"A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
- Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-708, May.
- Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
- Mingwei Sun & Paskalis Glabadanidis, 2022. "Can technical indicators predict the Chinese equity risk premium?," International Review of Finance, International Review of Finance Ltd., vol. 22(1), pages 114-142, March.
- Vandewalle, N. & Ausloos, M., 1997. "Coherent and random sequences in financial fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 454-459.
- Sangbae Kim & Francis In, 2010. "Portfolio allocation and the investment horizon: a multiscaling approach," Quantitative Finance, Taylor & Francis Journals, vol. 10(4), pages 443-453.
- Jacinta Chan Phooi M’ng & Ham Yi Jer, 2021. "Do economic statistics contain information to predict stock indexes futures prices and returns? Evidence from Asian equity futures markets," Review of Quantitative Finance and Accounting, Springer, vol. 57(3), pages 1033-1060, October.
- Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005.
"Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development,"
Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
- T. Di Matteo & T. Aste & M. M. Dacorogna, 2004. "Long term memories of developed and emerging markets: using the scaling analysis to characterize their stage of development," Papers cond-mat/0403681, arXiv.org.
- T. Di Matteo & T. Aste & Michel M. Dacorogna, 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Econometrics 0503004, University Library of Munich, Germany.
- Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo & Fernandez-Anaya, Guillermo, 2008. "Time-varying Hurst exponent for US stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6159-6169.
- Wa̧torek, Marcin & Drożdż, Stanisław & Oświȩcimka, Paweł & Stanuszek, Marek, 2019. "Multifractal cross-correlations between the world oil and other financial markets in 2012–2017," Energy Economics, Elsevier, vol. 81(C), pages 874-885.
- Takaishi, Tetsuya, 2018. "Statistical properties and multifractality of Bitcoin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 507-519.
- Giuseppe Brandi & T. Di Matteo, 2022. "On the statistics of scaling exponents and the multiscaling value at risk," The European Journal of Finance, Taylor & Francis Journals, vol. 28(13-15), pages 1361-1382, October.
- G. R. Jafari & A. Bahraminasab & P. Norouzzadeh, 2007. "Why Does The Standard Garch(1, 1) Model Work Well?," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 18(07), pages 1223-1230.
- Ramos-Requena, J.P. & Trinidad-Segovia, J.E. & Sánchez-Granero, M.A., 2017. "Introducing Hurst exponent in pair trading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 488(C), pages 39-45.
- Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Pawe{l} O'swic{e}cimka & Marek Stanuszek, 2018. "Multifractal cross-correlations between the World Oil and other Financial Markets in 2012-2017," Papers 1812.08548, arXiv.org, revised Jun 2019.
- Clark, Todd E. & West, Kenneth D., 2007.
"Approximately normal tests for equal predictive accuracy in nested models,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
- Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
- Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
- R. J. Buonocore & G. Brandi & R. N. Mantegna & T. Di Matteo, 2020.
"On the interplay between multiscaling and stock dependence,"
Quantitative Finance, Taylor & Francis Journals, vol. 20(1), pages 133-145, January.
- R. J. Buonocore & G. Brandi & R. N. Mantegna & T. Di Matteo, 2018. "On the interplay between multiscaling and stocks dependence," Papers 1802.01113, arXiv.org, revised Mar 2019.
- Franck Jovanovic, 2018. "A comparison between qualitative and quantitative histories: the example of the efficient market hypothesis," Journal of Economic Methodology, Taylor & Francis Journals, vol. 25(4), pages 291-310, October.
- Wang, Yudong & Pan, Zhiyuan & Liu, Li & Wu, Chongfeng, 2019. "Oil price increases and the predictability of equity premium," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 43-58.
- Wang, Yudong & Liu, Li & Gu, Rongbao, 2009. "Analysis of efficiency for Shenzhen stock market based on multifractal detrended fluctuation analysis," International Review of Financial Analysis, Elsevier, vol. 18(5), pages 271-276, December.
- Gao-Feng Gu & Wei-Xing Zhou, 2010. "Detrending moving average algorithm for multifractals," Papers 1005.0877, arXiv.org, revised Jun 2010.
- Mele, Antonio, 2007. "Asymmetric stock market volatility and the cyclical behavior of expected returns," Journal of Financial Economics, Elsevier, vol. 86(2), pages 446-478, November.
- Zhang, Yuanyuan & Chan, Stephen & Chu, Jeffrey & Nadarajah, Saralees, 2019. "Stylised facts for high frequency cryptocurrency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 598-612.
- Ausloos, M., 2000. "Statistical physics in foreign exchange currency and stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 285(1), pages 48-65.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Un, Kuok Sin & Ausloos, Marcel, 2022. "Equity premium prediction: Taking into account the role of long, even asymmetric, swings in stock market behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
- Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
- Dai, Zhifeng & Dong, Xiaodi & Kang, Jie & Hong, Lianying, 2020. "Forecasting stock market returns: New technical indicators and two-step economic constraint method," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
- Zhang, Zhikai & He, Mengxi & Zhang, Yaojie & Wang, Yudong, 2022. "Geopolitical risk trends and crude oil price predictability," Energy, Elsevier, vol. 258(C).
- Choi, Sun-Yong, 2021. "Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global financial crisis and COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
- Jiang, Fuwei & Liu, Hongkui & Tang, Guohao & Yu, Jiasheng, 2024. "Global mispricing matters," Journal of International Money and Finance, Elsevier, vol. 147(C).
- Mengxi He & Xianfeng Hao & Yaojie Zhang & Fanyi Meng, 2021. "Forecasting stock return volatility using a robust regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1463-1478, December.
- Dai, Zhifeng & Zhang, Xiaotong & Liang, Chao, 2024. "Efficient predictability of oil price: The role of VIX-based panic index shadow line difference," Energy Economics, Elsevier, vol. 129(C).
- Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2019. "Forecasting stock returns with cycle-decomposed predictors," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 250-261.
- José Afonso Faias & Juan Arismendi Zambrano, 2022. "Equity Risk Premium Predictability from Cross-Sectoral Downturns [International asset allocation with regime shifts]," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 12(3), pages 808-842.
- Yaojie Zhang & Feng Ma & Chao Liang & Yi Zhang, 2021. "Good variance, bad variance, and stock return predictability," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4410-4423, July.
- Gonçalo Faria & Fabio Verona, 2016.
"Forecasting the equity risk premium with frequency-decomposed predictors,"
Working Papers de Economia (Economics Working Papers)
06, Católica Porto Business School, Universidade Católica Portuguesa.
- Faria, Gonçalo & Verona, Fabio, 2017. "Forecasting the equity risk premium with frequency-decomposed predictors," Bank of Finland Research Discussion Papers 1/2017, Bank of Finland.
- , & Stein, Tobias, 2021.
"Equity premium predictability over the business cycle,"
CEPR Discussion Papers
16357, C.E.P.R. Discussion Papers.
- Mönch, Emanuel & Stein, Tobias, 2021. "Equity premium predictability over the business cycle," Discussion Papers 25/2021, Deutsche Bundesbank.
- Shi, Qi, 2023. "The RP-PCA factors and stock return predictability: An aligned approach," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
- Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
- Mengxi He & Yudong Wang & Yaojie Zhang, 2023. "The predictability of iron ore futures prices: A product‐material lead–lag effect," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(9), pages 1289-1304, September.
- Zhang, Ditian & Tang, Pan, 2023. "Forecasting European Union allowances futures: The role of technical indicators," Energy, Elsevier, vol. 270(C).
- Goodness C. Aye & Frederick W. Deale & Rangan Gupta, 2016.
"Does Debt Ceiling and Government Shutdown Help in Forecasting the US Equity Risk Premium?,"
Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 63(3), pages 273-291, June.
- Goodness C. Aye & Frederick W. Deale & Rangan Gupta, 2014. "Does Debt Ceiling and Government Shutdown Help in Forecasting the US Equity Risk Premium?," Working Papers 201422, University of Pretoria, Department of Economics.
- Xin-Lan Fu & Xing-Lu Gao & Zheng Shan & Yin-Jie Ma & Zhi-Qiang Jiang & Wei-Xing Zhou, 2025.
"Multifractal characteristics and return predictability in the Chinese stock markets,"
Annals of Operations Research, Springer, vol. 352(3), pages 415-440, September.
- Xin-Lan Fu & Xing-Lu Gao & Zheng Shan & Zhi-Qiang Jiang & Wei-Xing Zhou, 2018. "Multifractal characteristics and return predictability in the Chinese stock markets," Papers 1806.07604, arXiv.org.
- Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-FMK-2025-09-29 (Financial Markets)
- NEP-FOR-2025-09-29 (Forecasting)
- NEP-UPT-2025-09-29 (Utility Models and Prospect Theory)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.10483. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/arx/papers/2509.10483.html