IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v28y2022i13-15p1361-1382.html
   My bibliography  Save this article

On the statistics of scaling exponents and the multiscaling value at risk

Author

Listed:
  • Giuseppe Brandi
  • T. Di Matteo

Abstract

Research on scaling analysis in finance is vast and still flourishing. We introduce a novel statistical procedure based on the generalized Hurst exponent, the Relative Normalized and Standardized Generalized Hurst Exponent (RNSGHE), to robustly estimate and test the multiscaling property. Furthermore, we introduce a new tool to estimate the optimal aggregation time used in our methodology which we name Autocororrelation Segmented Regression. We numerically validate this procedure on simulated time series by using the Multifractal Random Walk and we then apply it to real financial data. We present results for times series with and without anomalies and we compute the bias that such anomalies introduce in the measurement of the scaling exponents. We also show how the use of proper scaling and multiscaling can ameliorate the estimation of risk measures such as Value at Risk (VaR). Finally, we propose a methodology based on Monte Carlo simulation, which we name Multiscaling Value at Risk (MSVaR), that takes into account the statistical properties of multiscaling time series. We mainly show that by using this statistical procedure in combination with the robustly estimated multiscaling exponents, the one year forecasted MSVaR mimics the VaR on the annual data for the majority of the stocks.

Suggested Citation

  • Giuseppe Brandi & T. Di Matteo, 2022. "On the statistics of scaling exponents and the multiscaling value at risk," The European Journal of Finance, Taylor & Francis Journals, vol. 28(13-15), pages 1361-1382, October.
  • Handle: RePEc:taf:eurjfi:v:28:y:2022:i:13-15:p:1361-1382
    DOI: 10.1080/1351847X.2021.1908391
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1351847X.2021.1908391
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1351847X.2021.1908391?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angelini, Daniele & Bianchi, Sergio, 2023. "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:28:y:2022:i:13-15:p:1361-1382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.