IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.04144.html
   My bibliography  Save this paper

The exact distribution of the conditional likelihood-ratio test in instrumental variables regression

Author

Listed:
  • Malte Londschien

Abstract

We derive the exact asymptotic distribution of the conditional likelihood-ratio test in instrumental variables regression under weak instrument asymptotics and for multiple endogenous variables. The distribution is conditional on all eigenvalues of the concentration matrix, rather than only the smallest eigenvalue as in an existing asymptotic upper bound. This exact characterization leads to a substantially more powerful test if there are differently identified endogenous variables. We provide computational methods implementing the test and demonstrate the power gains through numerical analysis.

Suggested Citation

  • Malte Londschien, 2025. "The exact distribution of the conditional likelihood-ratio test in instrumental variables regression," Papers 2509.04144, arXiv.org, revised Sep 2025.
  • Handle: RePEc:arx:papers:2509.04144
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.04144
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kleibergen, Frank, 2021. "Efficient size correct subset inference in homoskedastic linear instrumental variables regression," Journal of Econometrics, Elsevier, vol. 221(1), pages 78-96.
    2. Kleibergen, Frank, 2007. "Generalizing weak instrument robust IV statistics towards multiple parameters, unrestricted covariance matrices and identification statistics," Journal of Econometrics, Elsevier, vol. 139(1), pages 181-216, July.
    3. Hillier, Grant, 2009. "On The Conditional Likelihood Ratio Test For Several Parameters In Iv Regression," Econometric Theory, Cambridge University Press, vol. 25(2), pages 305-335, April.
    4. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
    5. Hillier, Grant, 2009. "Exact Properties Of The Conditional Likelihood Ratio Test In An Iv Regression Model," Econometric Theory, Cambridge University Press, vol. 25(4), pages 915-957, August.
    6. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malte Londschien, 2025. "A statistician's guide to weak-instrument-robust inference in instrumental variables regression with illustrations in Python," Papers 2508.12474, arXiv.org.
    2. Malte Londschien & Peter Buhlmann, 2024. "Weak-instrument-robust subvector inference in instrumental variables regression: A subvector Lagrange multiplier test and properties of subvector Anderson-Rubin confidence sets," Papers 2407.15256, arXiv.org, revised Nov 2024.
    3. Russell Davidson & Victoria Zinde‐Walsh, 2017. "Advances in specification testing," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1595-1631, December.
    4. Russell Davidson & James G. MacKinnon, 2008. "Bootstrap inference in a linear equation estimated by instrumental variables," Econometrics Journal, Royal Economic Society, vol. 11(3), pages 443-477, November.
    5. Antoine, Bertille & Lavergne, Pascal, 2023. "Identification-robust nonparametric inference in a linear IV model," Journal of Econometrics, Elsevier, vol. 235(1), pages 1-24.
    6. Leandro M. Magnusson, 2010. "Inference in limited dependent variable models robust to weak identification," Econometrics Journal, Royal Economic Society, vol. 13(3), pages 56-79, October.
    7. Isaiah Andrews & Timothy B. Armstrong, 2017. "Unbiased instrumental variables estimation under known first‐stage sign," Quantitative Economics, Econometric Society, vol. 8(2), pages 479-503, July.
    8. Kleibergen, Frank, 2021. "Efficient size correct subset inference in homoskedastic linear instrumental variables regression," Journal of Econometrics, Elsevier, vol. 221(1), pages 78-96.
    9. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," NBER Technical Working Papers 0313, National Bureau of Economic Research, Inc.
    10. Van de Sijpe, Nicolas & Windmeijer, Frank, 2023. "On the power of the conditional likelihood ratio and related tests for weak-instrument robust inference," Journal of Econometrics, Elsevier, vol. 235(1), pages 82-104.
    11. Kleibergen, Frank, 2009. "Tests of risk premia in linear factor models," Journal of Econometrics, Elsevier, vol. 149(2), pages 149-173, April.
    12. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    13. Leandro M. Magnusson, 2008. "Tests in Censored Models when the Structural Parameters Are Not Identified," Working Papers 0802, Tulane University, Department of Economics.
    14. Frank Kleibergen & Zhaoguo Zhan, 2025. "Double robust inference for continuous updating GMM," Quantitative Economics, Econometric Society, vol. 16(1), pages 295-327, January.
    15. Hillier, Grant, 2009. "Exact Properties Of The Conditional Likelihood Ratio Test In An Iv Regression Model," Econometric Theory, Cambridge University Press, vol. 25(4), pages 915-957, August.
    16. Kleibergen, Frank, 2007. "Generalizing weak instrument robust IV statistics towards multiple parameters, unrestricted covariance matrices and identification statistics," Journal of Econometrics, Elsevier, vol. 139(1), pages 181-216, July.
    17. Anna Mikusheva, 2013. "Survey on statistical inferences in weakly-identified instrumental variable models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 29(1), pages 117-131.
    18. Conley, Timothy G. & Hansen, Christian B. & McCulloch, Robert E. & Rossi, Peter E., 2008. "A semi-parametric Bayesian approach to the instrumental variable problem," Journal of Econometrics, Elsevier, vol. 144(1), pages 276-305, May.
    19. Doko Tchatoka, Firmin Sabro, 2012. "Specification Tests with Weak and Invalid Instruments," MPRA Paper 40185, University Library of Munich, Germany.
    20. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.04144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.