IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.01562.html
   My bibliography  Save this paper

On the Estimation of Multinomial Logit and Nested Logit Models: A Conic Optimization Approach

Author

Listed:
  • Hoang Giang Pham
  • Tien Mai
  • Minh Ha Hoang

Abstract

In this paper, we revisit parameter estimation for multinomial logit (MNL), nested logit (NL), and tree-nested logit (TNL) models through the framework of convex conic optimization. Traditional approaches typically solve the maximum likelihood estimation (MLE) problem using gradient-based methods, which are sensitive to step-size selection and initialization, and may therefore suffer from slow or unstable convergence. In contrast, we propose a novel estimation strategy that reformulates these models as conic optimization problems, enabling more robust and reliable estimation procedures. Specifically, we show that the MLE for MNL admits an equivalent exponential cone program (ECP). For NL and TNL, we prove that when the dissimilarity (scale) parameters are fixed, the estimation problem is convex and likewise reducible to an ECP. Leveraging these results, we design a two-stage procedure: an outer loop that updates the scale parameters and an inner loop that solves the ECP to update the utility coefficients. The inner problems are handled by interior-point methods with iteration counts that grow only logarithmically in the target accuracy, as implemented in off-the-shelf solvers (e.g., MOSEK). Extensive experiments across estimation instances of varying size show that our conic approach attains better MLE solutions, greater robustness to initialization, and substantial speedups compared to standard gradient-based MLE, particularly on large-scale instances with high-dimensional specifications and large choice sets. Our findings establish exponential cone programming as a practical and scalable alternative for estimating a broad class of discrete choice models.

Suggested Citation

  • Hoang Giang Pham & Tien Mai & Minh Ha Hoang, 2025. "On the Estimation of Multinomial Logit and Nested Logit Models: A Conic Optimization Approach," Papers 2509.01562, arXiv.org.
  • Handle: RePEc:arx:papers:2509.01562
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.01562
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Borsch-Supan, Axel & Hajivassiliou, Vassilis A., 1993. "Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models," Journal of Econometrics, Elsevier, vol. 58(3), pages 347-368, August.
    2. Paul Milgrom & Ilya Segal, 2002. "Envelope Theorems for Arbitrary Choice Sets," Econometrica, Econometric Society, vol. 70(2), pages 583-601, March.
    3. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    4. Carlos F. Daganzo & Michael Kusnic, 1993. "Technical Note—Two Properties of the Nested Logit Model," Transportation Science, INFORMS, vol. 27(4), pages 395-400, November.
    5. Ernst R. Berndt & Bronwyn H. Hall & Robert E. Hall & Jerry A. Hausman, 1974. "Estimation and Inference in Nonlinear Structural Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 4, pages 653-665, National Bureau of Economic Research, Inc.
    6. Michel Bierlaire, 2006. "A theoretical analysis of the cross-nested logit model," Annals of Operations Research, Springer, vol. 144(1), pages 287-300, April.
    7. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiou, Lesley & Walker, Joan L., 2007. "Masking identification of discrete choice models under simulation methods," Journal of Econometrics, Elsevier, vol. 141(2), pages 683-703, December.
    2. Peter Davis & Pasquale Schiraldi, 2014. "The flexible coefficient multinomial logit (FC-MNL) model of demand for differentiated products," RAND Journal of Economics, RAND Corporation, vol. 45(1), pages 32-63, March.
    3. David Müller & Vladimir Shikhman, 2022. "Network manipulation algorithm based on inexact alternating minimization," Computational Management Science, Springer, vol. 19(4), pages 627-664, October.
    4. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    5. Heiss, Florian & Winschel, Viktor, 2006. "Estimation with Numerical Integration on Sparse Grids," Discussion Papers in Economics 916, University of Munich, Department of Economics.
    6. Swait, Joffre, 2023. "Distribution-free estimation of individual parameter logit (IPL) models using combined evolutionary and optimization algorithms," Journal of choice modelling, Elsevier, vol. 47(C).
    7. Tinessa, Fiore, 2021. "Closed-form random utility models with mixture distributions of random utilities: Exploring finite mixtures of qGEV models," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 262-288.
    8. Heiss, Florian & Winschel, Viktor, 2008. "Likelihood approximation by numerical integration on sparse grids," Journal of Econometrics, Elsevier, vol. 144(1), pages 62-80, May.
    9. Guevara, C. Angelo & Ben-Akiva, Moshe E., 2013. "Sampling of alternatives in Logit Mixture models," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 185-198.
    10. Cherchi, Elisabetta & Guevara, Cristian Angelo, 2012. "A Monte Carlo experiment to analyze the curse of dimensionality in estimating random coefficients models with a full variance–covariance matrix," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 321-332.
    11. C. Angelo Guevara & Caspar G. Chorus & Moshe E. Ben-Akiva, 2016. "Sampling of Alternatives in Random Regret Minimization Models," Transportation Science, INFORMS, vol. 50(1), pages 306-321, February.
    12. Stephane Hess & Mark Fowler & Thomas Adler & Aniss Bahreinian, 2012. "A joint model for vehicle type and fuel type choice: evidence from a cross-nested logit study," Transportation, Springer, vol. 39(3), pages 593-625, May.
    13. Anna Fernández-Antolín & Matthieu Lapparent & Michel Bierlaire, 2018. "Modeling purchases of new cars: an analysis of the 2014 French market," Theory and Decision, Springer, vol. 84(2), pages 277-303, March.
    14. Allender, William J. & Richards, Timothy J., 2009. "Measures of Brand Loyalty," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49536, Agricultural and Applied Economics Association.
    15. Ortega, David L. & Wang, H. Holly & Wu, Laping & Hong, Soo Jeong, 2015. "Retail channel and consumer demand for food quality in China," China Economic Review, Elsevier, vol. 36(C), pages 359-366.
    16. Pereira, Pedro & Ribeiro, Tiago, 2011. "The impact on broadband access to the Internet of the dual ownership of telephone and cable networks," International Journal of Industrial Organization, Elsevier, vol. 29(2), pages 283-293, March.
    17. Choi, Andy S., 2013. "Nonmarket values of major resources in the Korean DMZ areas: A test of distance decay," Ecological Economics, Elsevier, vol. 88(C), pages 97-107.
    18. Doherty, Edel & Campbell, Danny, 2011. "Demand for improved food safety and quality: a cross-regional comparison," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108791, Agricultural Economics Society.
    19. Abdurrahman B. Aydemir & Erkan Duman, 2021. "Migrant Networks and Destination Choice: Evidence from Moves across Turkish Provinces," Koç University-TUSIAD Economic Research Forum Working Papers 2109, Koc University-TUSIAD Economic Research Forum.
    20. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.01562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.