IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.21583.html

Treatment effects at the margin: Everyone is marginal

Author

Listed:
  • Haotian Deng

Abstract

This paper develops a framework for identifying treatment effects when a policy simultaneously alters both the incentive to participate and the outcome of interest -- such as hiring decisions and wages in response to employment subsidies; or working decisions and wages in response to job trainings. This framework was inspired by my PhD project on a Belgian reform that subsidised first-time hiring, inducing entry by marginal firms yet meanwhile changing the wages they pay. Standard methods addressing selection-into-treatment concepts (like Heckman selection equations and local average treatment effects), or before-after comparisons (including simple DiD or RDD), cannot isolate effects at this shifting margin where treatment defines who is observed. I introduce marginality-weighted estimands that recover causal effects among policy-induced entrants, offering a policy-relevant alternative in settings with endogenous selection. This method can thus be applied widely to understanding the economic impacts of public programmes, especially in fields largely relying on reduced-form causal inference estimation (e.g. labour economics, development economics, health economics).

Suggested Citation

  • Haotian Deng, 2025. "Treatment effects at the margin: Everyone is marginal," Papers 2508.21583, arXiv.org.
  • Handle: RePEc:arx:papers:2508.21583
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.21583
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    2. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    3. Edward Vytlacil & James J. Heckman, 2001. "Policy-Relevant Treatment Effects," American Economic Review, American Economic Association, vol. 91(2), pages 107-111, May.
    4. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    5. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    6. David S. Lee, 2009. "Training, Wages, and Sample Selection: Estimating Sharp Bounds on Treatment Effects," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(3), pages 1071-1102.
    7. Johan Hombert & Antoinette Schoar & David Sraer & David Thesmar, 2020. "Can Unemployment Insurance Spur Entrepreneurial Activity? Evidence from France," Journal of Finance, American Finance Association, vol. 75(3), pages 1247-1285, June.
    8. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    9. Lee Branstetter & Francisco Lima & Lowell J. Taylor & Ana Venâncio, 2014. "Do Entry Regulations Deter Entrepreneurship and Job Creation? Evidence from Recent Reforms in Portugal," Economic Journal, Royal Economic Society, vol. 124(577), pages 805-832, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flores, Carlos A. & Flores-Lagunes, Alfonso, 2009. "Identification and Estimation of Causal Mechanisms and Net Effects of a Treatment under Unconfoundedness," IZA Discussion Papers 4237, Institute of Labor Economics (IZA).
    2. Markus Frölich & Martin Huber, 2014. "Treatment Evaluation With Multiple Outcome Periods Under Endogeneity and Attrition," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1697-1711, December.
    3. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    4. Martin Huber, 2014. "Treatment Evaluation in the Presence of Sample Selection," Econometric Reviews, Taylor & Francis Journals, vol. 33(8), pages 869-905, November.
    5. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    6. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    7. Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
    8. Anirban Basu & James J. Heckman & Salvador Navarro-Lozano & Sergio Urzua, 2007. "Use of instrumental variables in the presence of heterogeneity and self-selection: an application to treatments of breast cancer patients," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1133-1157.
    9. Bartalotti, Otávio & Kédagni, Désiré & Possebom, Vitor, 2023. "Identifying marginal treatment effects in the presence of sample selection," Journal of Econometrics, Elsevier, vol. 234(2), pages 565-584.
    10. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in Estimation of Average Treatment Effects by Changing the Estimand," Working Papers 0608, University of Miami, Department of Economics.
    11. Ham, John C. & Li, Xianghong & Reagan, Patricia B., 2011. "Matching and semi-parametric IV estimation, a distance-based measure of migration, and the wages of young men," Journal of Econometrics, Elsevier, vol. 161(2), pages 208-227, April.
    12. Jones A.M & Rice N, 2009. "Econometric Evaluation of Health Policies," Health, Econometrics and Data Group (HEDG) Working Papers 09/09, HEDG, c/o Department of Economics, University of York.
    13. James J. Heckman, 2008. "The Principles Underlying Evaluation Estimators with an Application to Matching," Annals of Economics and Statistics, GENES, issue 91-92, pages 9-73.
    14. Zhao, Zhong, 2008. "Sensitivity of propensity score methods to the specifications," Economics Letters, Elsevier, vol. 98(3), pages 309-319, March.
    15. Pedro H. C. Sant'Anna, 2016. "Program Evaluation with Right-Censored Data," Papers 1604.02642, arXiv.org.
    16. Gustavo Canavire-Bacarreza & Luis Castro Peñarrieta & Darwin Ugarte Ontiveros, 2021. "Outliers in Semi-Parametric Estimation of Treatment Effects," Econometrics, MDPI, vol. 9(2), pages 1-32, April.
    17. Michela Bia & German Blanco & Marie Valentova, 2021. "The Causal Impact of Taking Parental Leave on Wages: Evidence from 2005 to 2015," LISER Working Paper Series 2021-08, Luxembourg Institute of Socio-Economic Research (LISER).
    18. Daniel L. Millimet & Rusty Tchernis, 2013. "Estimation Of Treatment Effects Without An Exclusion Restriction: With An Application To The Analysis Of The School Breakfast Program," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(6), pages 982-1017, September.
    19. Halbert White & Karim Chalak, 2008. "Identifying Structural Effects in Nonseparable Systems Using Covariates," Boston College Working Papers in Economics 734, Boston College Department of Economics.
    20. James J. Heckman, 2005. "Micro Data, Heterogeneity and the Evaluation of Public Policy Part 2," The American Economist, Sage Publications, vol. 49(1), pages 16-44, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.21583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.