IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.20677.html
   My bibliography  Save this paper

Pricing American options time-capped by a drawdown event in a L\'evy market

Author

Listed:
  • Zbigniew Palmowski
  • Pawe{l} Stc{e}pniak

Abstract

This paper presents a derivation of the explicit price for the perpetual American put option time-capped by the first drawdown epoch beyond a predefined level. We consider the market in which an asset price is described by geometric L\'evy process with downward exponential jumps. We show that the optimal stopping rule is the first time when the asset price gets below a special value. The proof relies on martingale arguments and the fluctuation theory of L\'evy processes. We also provide a numerical analysis.

Suggested Citation

  • Zbigniew Palmowski & Pawe{l} Stc{e}pniak, 2025. "Pricing American options time-capped by a drawdown event in a L\'evy market," Papers 2508.20677, arXiv.org, revised Aug 2025.
  • Handle: RePEc:arx:papers:2508.20677
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.20677
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zaevski, Tsvetelin S., 2020. "Discounted perpetual game call options," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    2. Zbigniew Palmowski & Paweł Stȩpniak, 2023. "Last-Passage American Cancelable Option in Lévy Models," JRFM, MDPI, vol. 16(2), pages 1-14, January.
    3. Hongzhong Zhang & Olympia Hadjiliadis, 2009. "Formulas for the Laplace Transform of Stopping Times based on Drawdowns and Drawups," Papers 0911.1575, arXiv.org.
    4. Palmowski, Zbigniew & Tumilewicz, Joanna, 2018. "Pricing insurance drawdown-type contracts with underlying Lévy assets," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 1-14.
    5. Zaevski, Tsvetelin S. & Kounchev, Ognyan & Savov, Mladen, 2019. "Two frameworks for pricing defaultable derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 309-319.
    6. Peter Carr & Hongzhong Zhang & Olympia Hadjiliadis, 2011. "Maximum Drawdown Insurance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(08), pages 1195-1230.
    7. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    8. Sanford J. Grossman & Zhongquan Zhou, 1993. "Optimal Investment Strategies For Controlling Drawdowns," Mathematical Finance, Wiley Blackwell, vol. 3(3), pages 241-276, July.
    9. Libor Pospisil & Jan Vecer, 2010. "Portfolio sensitivity to changes in the maximum and the maximum drawdown," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 617-627.
    10. Carr, Peter, 1998. "Randomization and the American Put," The Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 597-626.
    11. Zhang, Hongzhong & Leung, Tim & Hadjiliadis, Olympia, 2013. "Stochastic modeling and fair valuation of drawdown insurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 840-850.
    12. Broadie, Mark & Detemple, Jerome, 1995. "American Capped Call Options on Dividend-Paying Assets," The Review of Financial Studies, Society for Financial Studies, vol. 8(1), pages 161-191.
    13. Pospisil, Libor & Vecer, Jan & Hadjiliadis, Olympia, 2009. "Formulas for stopped diffusion processes with stopping times based on drawdowns and drawups," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2563-2578, August.
    14. Zaevski, Tsvetelin S., 2020. "Discounted perpetual game put options," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    15. Pavel V. Gapeev & Hessah Al Motairi, 2018. "Perpetual American Defaultable Options in Models with Random Dividends and Partial Information," Risks, MDPI, vol. 6(4), pages 1-15, November.
    16. Daniel Egloff & Markus Leippold, 2009. "The Valuation of American Options with Stochastic Stopping Time Constraints," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(3), pages 287-305.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pawe{l} Stc{e}pniak & Zbigniew Palmowski, 2025. "Pricing time-capped American options using Least Squares Monte Carlo method," Papers 2503.01040, arXiv.org.
    2. Zbigniew Palmowski & Pawe{l} Stc{e}pniak, 2025. "Pricing American Options Time-Capped by a Drawdown Event," Papers 2509.00999, arXiv.org.
    3. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, October.
    4. Zbigniew Palmowski & Joanna Tumilewicz, 2017. "Fair valuation of L\'evy-type drawdown-drawup contracts with general insured and penalty functions," Papers 1712.04418, arXiv.org, revised Feb 2018.
    5. David Landriault & Bin Li & Hongzhong Zhang, 2014. "On the Frequency of Drawdowns for Brownian Motion Processes," Papers 1403.1183, arXiv.org.
    6. Zhang, Hongzhong & Leung, Tim & Hadjiliadis, Olympia, 2013. "Stochastic modeling and fair valuation of drawdown insurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 840-850.
    7. Ola Mahmoud, 2015. "The Temporal Dimension of Risk," Papers 1501.01573, arXiv.org, revised Jun 2016.
    8. Zhang, Gongqiu & Li, Lingfei, 2023. "A general method for analysis and valuation of drawdown risk," Journal of Economic Dynamics and Control, Elsevier, vol. 152(C).
    9. Zbigniew Palmowski & Joanna Tumilewicz, 2018. "Drawdown insurance contracts for the Lévy-type model with the phase-type jump distribution and general reward function," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 51, pages 255-270.
    10. Hongzhong Zhang & Olympia Hadjiliadis, 2012. "Drawdowns and the Speed of Market Crash," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 739-752, September.
    11. Zbigniew Palmowski & Joanna Tumilewicz, 2017. "Pricing insurance drawdown-type contracts with underlying L\'evy assets," Papers 1701.01891, arXiv.org, revised Oct 2017.
    12. Damiano Rossello & Silvestro Lo Cascio, 2021. "A refined measure of conditional maximum drawdown," Risk Management, Palgrave Macmillan, vol. 23(4), pages 301-321, December.
    13. Zhenyu Cui & Duy Nguyen, 2018. "Magnitude and Speed of Consecutive Market Crashes in a Diffusion Model," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 117-135, March.
    14. David Landriault & Bin Li & Hongzhong Zhang, 2017. "A Unified Approach for Drawdown (Drawup) of Time-Homogeneous Markov Processes," Papers 1702.07786, arXiv.org.
    15. Pingping Zeng & Gongqiu Zhang & Weinan Zhang, 2025. "Drawdowns, Drawups, and Occupation Times under General Markov Models," Papers 2506.00552, arXiv.org.
    16. Palmowski, Zbigniew & Tumilewicz, Joanna, 2018. "Pricing insurance drawdown-type contracts with underlying Lévy assets," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 1-14.
    17. Tommaso Proietti, 2024. "Ups and (Draw)Downs," CEIS Research Paper 576, Tor Vergata University, CEIS, revised 03 May 2024.
    18. Zbigniew Palmowski & Jos'e Luis P'erez & Kazutoshi Yamazaki, 2020. "Double continuation regions for American options under Poisson exercise opportunities," Papers 2004.03330, arXiv.org.
    19. Landriault, David & Li, Bin & Lkabous, Mohamed Amine, 2021. "On the analysis of deep drawdowns for the Lévy insurance risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 147-155.
    20. Zbigniew Palmowski & José Luis Pérez & Kazutoshi Yamazaki, 2021. "Double continuation regions for American options under Poisson exercise opportunities," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 722-771, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.20677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.