IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.12514.html
   My bibliography  Save this paper

Reconstructing Subnational Labor Indicators in Colombia: An Integrated Machine and Deep Learning Approach

Author

Listed:
  • Jaime Vera-Jaramillo

Abstract

This study proposes a unified multi-stage framework to reconstruct consistent monthly and annual labor indicators for all 33 Colombian departments from 1993 to 2025. The approach integrates temporal disaggregation, time-series splicing and interpolation, statistical learning, and institutional covariates to estimate seven key variables: employment, unemployment, labor force participation (PEA), inactivity, working-age population (PET), total population, and informality rate, including in regions without direct survey coverage. The framework enforces labor accounting identities, scales results to demographic projections, and aligns all estimates with national benchmarks to ensure internal coherence. Validation against official departmental GEIH aggregates and city-level informality data for the 23 metropolitan areas yields in-sample Mean Absolute Percentage Errors (MAPEs) below 2.3% across indicators, confirming strong predictive performance. To our knowledge, this is the first dataset to provide spatially exhaustive and temporally consistent monthly labor measures for Colombia. By incorporating both quantitative and qualitative dimensions of employment, the panel enhances the empirical foundation for analysing long-term labor market dynamics, identifying regional disparities, and designing targeted policy interventions.

Suggested Citation

  • Jaime Vera-Jaramillo, 2025. "Reconstructing Subnational Labor Indicators in Colombia: An Integrated Machine and Deep Learning Approach," Papers 2508.12514, arXiv.org, revised Aug 2025.
  • Handle: RePEc:arx:papers:2508.12514
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.12514
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.12514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.