IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.04897.html
   My bibliography  Save this paper

Weak Identification in Peer Effects Estimation

Author

Listed:
  • William W. Wang
  • Ali Jadbabaie

Abstract

It is commonly accepted that some phenomena are social: for example, individuals' smoking habits often correlate with those of their peers. Such correlations can have a variety of explanations, such as direct contagion or shared socioeconomic circumstances. The network linear-in-means model is a workhorse statistical model which incorporates these peer effects by including average neighborhood characteristics as regressors. Although the model's parameters are identifiable under mild structural conditions on the network, it remains unclear whether identification ensures reliable estimation in the "infill" asymptotic setting, where a single network grows in size. We show that when covariates are i.i.d. and the average network degree of nodes increases with the population size, standard estimators suffer from bias or slow convergence rates due to asymptotic collinearity induced by network averaging. As an alternative, we demonstrate that linear-in-sums models, which are based on aggregate rather than average neighborhood characteristics, do not exhibit such issues as long as the network degrees have some nontrivial variation, a condition satisfied by most network models.

Suggested Citation

  • William W. Wang & Ali Jadbabaie, 2025. "Weak Identification in Peer Effects Estimation," Papers 2508.04897, arXiv.org.
  • Handle: RePEc:arx:papers:2508.04897
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.04897
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yann Bramoullé & Habiba Djebbari & Bernard Fortin, 2020. "Peer Effects in Networks: A Survey," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 603-629, August.
    2. Giles, David E. A., 1984. "Instrumental variables regressions involving seasonal data," Economics Letters, Elsevier, vol. 14(4), pages 339-343.
    3. Isaiah Andrews & James H. Stock & Liyang Sun, 2019. "Weak Instruments in Instrumental Variables Regression: Theory and Practice," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 727-753, August.
    4. Guy Tchuente, 2019. "Weak Identification and Estimation of Social Interaction Models," Papers 1902.06143, arXiv.org.
    5. Charles F. Manski, 1993. "Identification of Endogenous Social Effects: The Reflection Problem," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 531-542.
    6. Bramoullé, Yann & Djebbari, Habiba & Fortin, Bernard, 2009. "Identification of peer effects through social networks," Journal of Econometrics, Elsevier, vol. 150(1), pages 41-55, May.
    7. Daron Acemoglu & Vasco M. Carvalho & Asuman Ozdaglar & Alireza Tahbaz‐Salehi, 2012. "The Network Origins of Aggregate Fluctuations," Econometrica, Econometric Society, vol. 80(5), pages 1977-2016, September.
    8. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2020. "Sampling‐Based versus Design‐Based Uncertainty in Regression Analysis," Econometrica, Econometric Society, vol. 88(1), pages 265-296, January.
    9. Eric Auerbach, 2022. "Identification and Estimation of a Partially Linear Regression Model Using Network Data," Econometrica, Econometric Society, vol. 90(1), pages 347-365, January.
    10. Bai, Jushan & Ng, Serena, 2019. "Rank regularized estimation of approximate factor models," Journal of Econometrics, Elsevier, vol. 212(1), pages 78-96.
    11. Lung-Fei Lee & Chao Yang & Jihai Yu, 2023. "QML and Efficient GMM Estimation of Spatial Autoregressive Models with Dominant (Popular) Units," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 550-562, April.
    12. Knight, Keith, 2008. "Shrinkage Estimation For Nearly Singular Designs," Econometric Theory, Cambridge University Press, vol. 24(2), pages 323-337, April.
    13. Bertille Antoine & Eric Renault, 2009. "Efficient GMM with nearly-weak instruments," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 135-171, January.
    14. Jing Cai & Alain De Janvry & Elisabeth Sadoulet, 2015. "Social Networks and the Decision to Insure," American Economic Journal: Applied Economics, American Economic Association, vol. 7(2), pages 81-108, April.
    15. Lee, Lung-fei, 2007. "The method of elimination and substitution in the GMM estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 140(1), pages 155-189, September.
    16. Liu, Xiaodong & Patacchini, Eleonora & Zenou, Yves, 2014. "Endogenous peer effects: local aggregate or local average?," Journal of Economic Behavior & Organization, Elsevier, vol. 103(C), pages 39-59.
    17. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    18. Zhengyu Zhang & Pingfang Zhu, 2010. "A More Efficient Best Spatial Three-stage Least Squares Estimator for Spatial Autoregressive Models," Annals of Economics and Finance, Society for AEF, vol. 11(1), pages 155-184, May.
    19. Mikusheva, Anna, 2010. "Robust confidence sets in the presence of weak instruments," Journal of Econometrics, Elsevier, vol. 157(2), pages 236-247, August.
    20. Hahn, Jinyong & Kuersteiner, Guido, 2002. "Discontinuities of weak instrument limiting distributions," Economics Letters, Elsevier, vol. 75(3), pages 325-331, May.
    21. Lung-fei Lee, 2003. "Best Spatial Two-Stage Least Squares Estimators for a Spatial Autoregressive Model with Autoregressive Disturbances," Econometric Reviews, Taylor & Francis Journals, vol. 22(4), pages 307-335.
    22. Lee, Lung-Fei, 2002. "Consistency And Efficiency Of Least Squares Estimation For Mixed Regressive, Spatial Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 18(2), pages 252-277, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yann Algan & Quoc-Anh Do & Nicolò Dalvit & Alexis Le Chapelain & Yves Zenou, 2015. "How Social Networks Shape Our Beliefs: A Natural Experiment among Future French Politicians," Working Papers hal-03459820, HAL.
    2. repec:spo:wpmain:info:hdl:2441/78vacv4udu92eq3fec89svm9uv is not listed on IDEAS
    3. Gibbons, Steve & Overman, Henry G. & Patacchini, Eleonora, 2015. "Spatial Methods," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 115-168, Elsevier.
    4. Sturm, Patrick, 2025. "Workplace peer effects in retirement," W.E.P. - Würzburg Economic Papers 112, University of Würzburg, Department of Economics.
    5. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    6. William C. Horrace & Hyunseok Jung & Jonathan L. Presler & Amy Ellen Schwartz, 2025. "What makes a classmate a peer? Examining which peers matter in NYC elementary schools," Journal of Population Economics, Springer;European Society for Population Economics, vol. 38(3), pages 1-28, September.
    7. repec:hal:spmain:info:hdl:2441/78vacv4udu92eq3fec89svm9uv is not listed on IDEAS
    8. Liu, Xiaodong & Lee, Lung-fei, 2010. "GMM estimation of social interaction models with centrality," Journal of Econometrics, Elsevier, vol. 159(1), pages 99-115, November.
    9. Tiziano Arduini & Edoardo Rainone, 2024. "Partial identification of treatment response under complementarity and substitutability," Temi di discussione (Economic working papers) 1473, Bank of Italy, Economic Research and International Relations Area.
    10. Kripfganz, Sebastian, 2014. "Unconditional Transformed Likelihood Estimation of Time-Space Dynamic Panel Data Models," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100604, Verein für Socialpolitik / German Economic Association.
    11. William C. Horrace & Hyunseok Jung & Shane Sanders, 2022. "Network Competition and Team Chemistry in the NBA," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 35-49, January.
    12. Vincent Boucher & Yann Bramoullé, 2020. "Binary Outcomes and Linear Interactions," AMSE Working Papers 2038, Aix-Marseille School of Economics, France.
    13. Kwok, Hon Ho, 2019. "Identification and estimation of linear social interaction models," Journal of Econometrics, Elsevier, vol. 210(2), pages 434-458.
    14. Margherita Comola & Carla Inguaggiato & Mariapia Mendola, 2021. "Learning about Farming: Innovation and Social Networks in a Resettled Community in Brazil," Development Working Papers 468, Centro Studi Luca d'Agliano, University of Milano.
    15. Sida Peng, 2019. "Heterogeneous Endogenous Effects in Networks," Papers 1908.00663, arXiv.org.
    16. Guy Tchuente, 2019. "Weak Identification and Estimation of Social Interaction Models," Papers 1902.06143, arXiv.org.
    17. Jochmans, Koen, 2023. "Peer effects and endogenous social interactions," Journal of Econometrics, Elsevier, vol. 235(2), pages 1203-1214.
    18. Yann Algan & Quoc-Anh Do & Nicolò Dalvit & Alexis Le Chapelain & Yves Zenou, 2015. "How Social Networks Shape Our Beliefs: A Natural Experiment among Future French Politicians," Working Papers hal-03459820, HAL.
    19. Lambotte, Mathieu & Mathy, Sandrine & Risch, Anna & Treibich, Carole, 2023. "Disentangling peer effects in transportation mode choice: The example of active commuting," Journal of Environmental Economics and Management, Elsevier, vol. 121(C).
    20. Prosper Dovonon & Nikolay Gospodinov, 2025. "A Uniformly Valid Test for Instrument Exogeneity," FRB Atlanta Working Paper 2025-9, Federal Reserve Bank of Atlanta.
    21. Xia Du & Wei Zheng & Yi Yao, 2023. "The peer effect in adverse selection: Evidence from the micro health insurance market in Pakistan," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(4), pages 1063-1100, December.
    22. Di Fang & Timothy J. Richards, 2018. "New Maize Variety Adoption in Mozambique: A Spatial Approach," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 66(3), pages 469-488, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.04897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.