IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.00288.html
   My bibliography  Save this paper

Reconfiguring Digital Accountability: AI-Powered Innovations and Transnational Governance in a Postnational Accounting Context

Author

Listed:
  • Claire Li
  • David Freeborn

Abstract

This study explores how AI-powered digital innovations are reshaping organisational accountability in a transnational governance context. As AI systems increasingly mediate decision-making in domains such as auditing and financial reporting, traditional mechanisms of accountability, based on control, transparency, and auditability, are being destabilised. We integrate the Technology Acceptance Model (TAM), Actor-Network Theory (ANT), and institutional theory to examine how organisations adopt AI technologies in response to regulatory, ethical, and cultural pressures that transcend national boundaries. We argue that accountability is co-constructed within global socio-technical networks, shaped not only by user perceptions but also by governance logics and normative expectations. Extending TAM, we incorporate compliance and legitimacy as key factors in perceived usefulness and usability. Drawing on ANT, we reconceptualise accountability as a relational and emergent property of networked assemblages. We propose two organisational strategies including internal governance reconfiguration and external actor-network engagement to foster responsible, legitimate, and globally accepted AI adoption in the accounting domain.

Suggested Citation

  • Claire Li & David Freeborn, 2025. "Reconfiguring Digital Accountability: AI-Powered Innovations and Transnational Governance in a Postnational Accounting Context," Papers 2507.00288, arXiv.org.
  • Handle: RePEc:arx:papers:2507.00288
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.00288
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.00288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.